A Common Fixed Point Theorem in Menger Spaces

Using Implicit Relation

K. P. R. Sastry¹, G. A. Naidu², P. V. S. Prasad³ and S. S. A. Sastriv

¹ 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India
 kprsastry@hotmail.com

²,³ Department of Mathematics, Andhra University
 Visakhapatnam-530 003, India
 drgolivean@yahoo.com
drgolivean@yahoo.com
 pvsprasad10@yahoo.in

⁴ Department of Basic Science and Humanities
 Coastal Institute of Technology and Management
 Narapam, Vizianagaram- 535 183, India
 sambharasas@yahoo.co.in

Abstract. In an attempt to modify Theorem 1 of [7], which was shown to be not valid in [4], the notion of strict Menger spaces was introduced. In this paper we make use of this notion of a strict Menger space to prove a common fixed point Theorem for self maps. We also obtain a corollary, a fixed point result for six maps.

Keywords: Common fixed point, Compatible maps, Strict Menger space

Mathematical Subject Classification: 47H10, 54H25

1. INTRODUCTION

In this section we give some definitions and results which we use in the next section.

Definition 1.1: [5] A function F: ℝ → [0, 1] is called a distribution function if it is non-decreasing, left continuous, \(\inf_{x \in \mathbb{R}} F(x) = 0 \) and \(\sup_{x \in \mathbb{R}} F(x) = 1 \).

Definition 1.2: [5] A triangular norm \(*: [0,1] \times [0,1] \to [0,1] \) is a function satisfying the following conditions
A triangular norm is also denoted by t-norm.

For any \(a, b \in [0,1] \), if we define

\[
(a * b) = \min(a, b)
\]

then \(*\) is a t-norm and is denoted by ‘min’. We observe that if \(a * b = \min(a, b) \) \(\forall a, b \in [0,1] \), then \(*\) is min t-norm.

Definition 1.3: [5] Let \(X \) be a non-empty set and let \(F: X \times X \to \mathbb{D} \) (The set of distribution functions). For \(p, q \in X \), we denote the image of the pair \((p, q)\) by \(F_{p, q} \) which is a distribution function so that \(F_{p, q}(x) = 1 \), for every real \(x \).

Suppose \(F \) satisfies:

a) \(F_{p, q}(0) = 0 \) if and only if \(p = q \)

b) \(F_{p, q}(0) = 0 \)

c) \(F_{p, q}(x) = F_{q, p}(x) \) \(\forall p, q \in X \)

d) If \(F_{p, q}(x) = 1 \) and \(F_{q, r}(y) = 1 \) then \(F_{p, r}(x + y) = 1 \) where \(p, q, r \in X \).

Then \((X, F)\) is called a probabilistic metric space.

Definition 1.4: [2] Let \(X \) be a non empty set, \(*\) be a t-norm and \(F: X \times X \to \mathbb{D} \) be a function satisfying

(i) \(F_{p, q}(0) = 0 \) \(\forall p, q \in X \)

(ii) \(F_{p, q}(x) = 1 \) for all \(x > 0 \) if and only if \(p = q \)

(iii) \(F_{p, q}(x) = F_{q, p}(x) \) \(\forall p, q \in X \)

(iv) \(F_{p, r}(x + y) \geq F_{p, q}(x) * F_{q, r}(y) \) for all \(x, y \geq 0 \) and \(p, q, r \in X \).

Then the triplet \((X, F, *)\) is called a Menger space.

Definition 1.5: [4] Let \((X, F, *)\) be a Menger space such that \(F_{x,y}(t) \) is strictly increasing in \(t \) when \(x \neq y \). Then \((X, F, *)\) is called a strict Menger space.

Example 1.6: Let \((X, d)\) be a metric space. Define \(F_{x,y}(t) = \frac{t}{t + d(x,y)} \) \(\forall t > 0 \) and \(x, y \in X \). If t-norm \(*\) is \(a * b = \min\{a, b\} \) \(\forall a, b \in [0,1] \), then \((X, F, *)\) is a strict Menger space.

Definition 1.7: [6]

(i) Let \((X, F, *)\) be a Menger space and \(p \in X \).

For \(\varepsilon > 0, 0 < \lambda < 1 \), the \((\varepsilon, \lambda)\)-neighborhood of \(p \) is defined as \(U_p(\varepsilon, \lambda) = \{ q \in X: F_{p, q}(\varepsilon) > 1 - \lambda \} \). It may be observed that, if \(*\) is continuous then the topology induced by the family \(\{U_p(\varepsilon, \lambda): p \in X, \varepsilon > 0, 0 < \lambda < 1 \} \) is a Hausdorff topology on \(X \) and is known as the \((\varepsilon, \lambda)\) - topology.

(ii) A sequence \(\{x_n\} \) in \(X \) is said to converge to \(p \in X \) in the \((\varepsilon, \lambda)\)-topology, if for any \(\varepsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N(\varepsilon, \lambda) \) such that \(F_{x_n, p}(\varepsilon) > 1 - \lambda \) where \(n > N \).
A sequence \(\{x_n\} \) in \(X \) is said to be a Cauchy sequence in the \((\varepsilon, \lambda)\)-topology, if for \(\varepsilon > 0 \) and \(0 < \lambda < 1 \) there exists a positive integer \(N = N(\varepsilon, \lambda) \) such that \(F_{x_m, x_n}(\varepsilon) > 1 - \lambda \) for all \(m, n > N \).

A Menger space \((X, F, *)\) where \(*\) is continuous, is said to be complete if every Cauchy sequence in \(X \) is convergent in \((\varepsilon, \lambda)\)-topology.

Definition 1.8: [1] Let \(* \) be a t-norm. For any \(\alpha \in [0, 1] \), write \(*_0(\alpha) = 1 \) and \(*_1(\alpha) = *_0(\alpha, \alpha) = *_1(1, \alpha) = \alpha \). In general define \(*_{n+1}(\alpha) = *_n(*_n(\alpha), \alpha) \) for \(n = 0, 1, 2 \ldots \).

Suppose that given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(x > 1 - \delta \) implies \(*_n(x) > 1 - \varepsilon \) \(\forall n \in N \).

Then the sequence \(\{*_n\} \) is said to be equicontinuous at 1. If \(\{*_n\} \) is equicontinuous at 1, then we say that \(* \) is a Hadzic type t-norm.

Definitions 1.9: [7] Two self mappings \(A \) and \(B \) of a Menger space \((X, F, *)\) are said to be (i) compatible of type (P) if
\[
F_{ABx_n, BBx_n}(t) \to 1 \quad \text{and} \quad F_{BAX_n, AAX_n}(t) \to 1 \quad \text{for all} \ t > 0
\]
Where \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

(ii) compatible of type (P1) if
\[
F_{ABx_n, BBx_n}(t) \to 1 \quad \text{for all} \ t > 0
\]
Where \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

(iii) compatible of type (P2) if
\[
F_{BAX_n, AAX_n}(t) \to 1 \quad \text{for all} \ t > 0
\]
Where \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Bx_n \to z \) for some \(z \) in \(X \) as \(n \to \infty \).

Lemma 1.10: [3] Let \((X, F, *)\) be a sequence in a Menger space \((X, F, *)\) with Hadzic-type t-norm \(*\) and \(0 < \alpha < 1 \). Suppose \(\{x_n\} \) is a sequence in \(X \) such that for any \(s > 0 \), \(F_{x_m, x_{n+1}}(s) \geq F_{x_0, x_1}(\frac{s}{\alpha^n}) \), then \(\{x_n\} \) is a Cauchy sequence.

We observe that ‘min’ t-norm is of Hadzic type.

Lemma 1.11: [8] Let \((X, F, *)\) be a Menger space. If there exists \(k \in (0, 1) \) such that \(F_{x,y}(kt) \geq F_{x,y}(t) \) for all \(x, y \in X \) and \(t > 0 \), then \(x = y \).

2. Main results

In this section, we make use of the notion of a strict Menger space introduced in [4] to prove a fixed point Theorem for four maps. In this connection, it may not be out of place to mention that the notion of a strict Menger space was introduced to modify, Theorem 1 of [7].

Theorem 2.1: Let \(P, Q, R \) and \(C \) be self mappings of a complete strict Menger space
(X, F, *) with t-norm * such that \(t \ast t \geq t \forall t \in [0,1] \), satisfying:

(a) \(P(X) \subseteq R(X), Q(X) \subseteq C(X) \)

(b) there exists a constant \(k \in (0, \frac{1}{2}) \) such that

\[
F_{P,X,Y}(kt) \geq \min \{ F_{P,X,Y}(t) \ast F_{C,X,Y}(t + 0), F_{P,X,Y}(t + 0) \ast F_{C,X,Y}(t) \}
\]

for all \(x, y \in X, t > 0 \)

(c) either \(P \) or \(C \) is continuous

(d) the pairs \((P, C) \) and \((Q, R) \) are both compatible of type \((P_2) \) or type \((P_2) \)

Then \(P, Q, R \) and \(C \) have a unique common fixed point.

Proof: Let \(x_0 \in X \). By (a), there exist sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) such that

\[
\begin{align*}
X_{n+1} &= R X_n \quad \text{and} \\
Q X_{n+1} &= C X_n \quad \text{for } n = 0, 1, 2, \ldots
\end{align*}
\]

By taking \(x = x_{2n}, y = x_{2n+1} \) for all \(t > 0 \) in (b), we get

\[
F_{P,X,Y}(kt) \geq \min \{ F_{P,X,Y}(t) \ast F_{C,X,Y}(t + 0), F_{P,X,Y}(t + 0) \ast F_{C,X,Y}(t) \}
\]

for all \(x, y \in X, t > 0 \)

Therefore \(F_{Y_{2n-1},Y_{2n+1}}(kt) \geq F_{Y_{2n-1},Y_{2n+1}}(\frac{t}{2}) \)

Similarly, we can prove that \(F_{Y_{2n+1},Y_{2n+2}}(kt) \geq F_{Y_{2n+1},Y_{2n+2}}(\frac{t}{2}) \)

Hence \(F_{Y_{n+1},Y_n}(t) \geq F_{Y_{n+1},Y_n}(\frac{t}{2}) \forall t > 0, n \in N \)

i.e. \(F_{Y_{n+1},Y_n}(t) \geq F_{Y_{n+1},Y_n}(\frac{t}{2^k}) \geq \cdots \geq F_{Y_0,Y_1}(\frac{t}{(2k)^n}) \)

By Lemma 1.10, \(\{y_n\} \) is a Cauchy sequence.

Since \((X, F, *) \) is complete, it converges to a point \(z \) in \(X \). Also its sub sequences \(\{P X_{2n}\} \to z, \{C X_{2n}\} \to z, \{Q X_{2n+1}\} \to z \) and \(\{R X_{2n+1}\} \to z \)

Case (i): \(C \) is continuous, \((P, C) \) and \((Q, R) \) are compatible of type \((P_2) \)

CC \(X_{2n} \to Cz, CP X_{2n} \to Cz \) (\(C \) is continuous)

PP \(X_{2n} \to Cz \) (\(P, C \) is compatible of type \((P_2) \))

By taking \(x = P X_{2n}, y = x_{2n+1} \) in (b), we get \(Cz = z \).

Similarly by taking \(x = z, y = x_{2n+1} \) in (b), we get \(Pz = z \).

Since \(P(X) \subseteq R(X) \), there exists \(w \in X \) such that \(z = Pz = Rw \)

By taking \(x = x_{2n}, y = w \) in (b), we get \(Qw = z \)

Therefore \(Rz = Qz \).

Now by taking \(x = x_{2n}, y = z \) in (b), we get \(Qz = z \).

\(\therefore Pz = Qz = Cz = Rz = z \).
Common fixed point theorem in Menger spaces

i.e. z is a common fixed point for P, Q, R and C.

Case (ii): P is continuous and $(P, C), (Q, R)$ are both compatible of type (P_2)

$PPx_{2n} \rightarrow Pz, PCx_{2n} \rightarrow Pz$ ($\because P$ is continuous)

$CPx_{2n} \rightarrow Pz$ ($\because (P, C)$ is compatible of type (P_2))

By taking $x = Px_{2n}, y = x_{2n+1}$ in (b), we get

$$F_{PPx_{2n},Qx_{2n+1}}(kt) \geq \min \{F_{PPx_{2n},Rx_{2n+1}}(t) + F_{CPx_{2n},Qx_{2n+1}}(t + 0), F_{PPx_{2n},Rx_{2n+1}}(t + 0) + F_{CPx_{2n},Qx_{2n+1}}(t)\}$$

On letting $n \rightarrow \infty$

$$F_{Pz,z}(kt) \geq \min \{F_{Pz,z}(t) * F_{Pz,z}(t + 0), F_{Pz,z}(t + 0) * F_{Pz,z}(t)\}$$

$$\geq F_{Pz,z}(t)$$

Thus by Lemma 1.11, $Pz = z$.

We have $z = Qz = Cz = Pz$.

$\therefore z$ is a common fixed point for P, Q, R and C.

$\therefore z$ is a common fixed point for P, Q, R and C when C is continuous (or P is continuous) and $(P, C), (Q, R)$ are compatible of type P_2 (or P_1)

For uniqueness v be common fixed point for P, Q, R and C.

Take $x = z = Qz = Cz = Pz$.

$i.e. z$ is a common fixed point for P, Q, R and C.

$$F_{Pz,Qv}(kt) \geq \min \{F_{Pz,Rv}(t) * F_{Cz,Qv}(t + 0), F_{Pz,Rv}(t + 0) * F_{Cz,Qv}(t)\}$$

$$F_{z,v}(kt) \geq \min \{F_{z,v}(t) * F_{z,v}(t + 0), F_{z,v}(t + 0) * F_{z,v}(t)\}$$

$$\geq F_{z,v}(t)$$

Thus by Lemma 1.11, $v = z$.

Corollary 2.2: Let A, B, P, Q, S and T be self mappings of a complete strict Menger space (X, F, \ast) with continuous \ast such that $t * t \geq t \forall t \in [0,1]$, satisfying:

(a) $P(X) \subseteq ST(X), Q(X) \subseteq AB(X)$

(b) there exists a constant $k \in (0, \frac{1}{2})$ such that

$$F_{Pz,Qy}(kt) \geq \min \{F_{Pz,Ay}(t) * F_{STz,Qy}(t + 0), F_{Pz,Ay}(t + 0) * F_{STz,Qy}(t)\}$$

for all $x, y \in X, t > 0$

(c) either P or ST is continuous

(d) the pairs (P, ST) and (Q, AB) are both compatible of type (P_1) or type (P_2)

(e) $AB = BA, ST = TS, PB = BP, QT = TQ$

Then A, B, P, Q, S and T have a unique common fixed point.

Proof: Write $C = ST$ and $R = AB$

Then, by Theorem 2.1, there exists $z \in X$ such that $z = Pz = Rz = Qz = Cz$.

Hence $z = Pz = Rz = STz = Qz = Cz = ABz$.

Now $STz = z = T(STz) = Tz = TSTz = Tz = STTz = TZ$
\(\therefore Tz \) is a fixed point for ST.
Since \(ABz = z \Rightarrow BABz = Bz \Rightarrow ABBz = Bz \)
i.e. \(Bz \) is a fixed point for \(AB \).
Similarly, \(ABz = z \Rightarrow AABz = Az \Rightarrow ABAz = Az \)
i.e. \(Az \) is a fixed point for \(AB \).
Therefore \(Az \) and \(Bz \) are fixed points for \(AB \).
Now \(Pz = z \Rightarrow BPz = Bz \Rightarrow PBz = Bz \)
i.e. \(Bz \) is a fixed point for \(P \).
Since \(Qz = z \Rightarrow TQz = Tz \Rightarrow QTz = Tz \)
i.e. \(Tz \) is a fixed point for \(Q \).
Now we prove that \(Bz = Tz \).
By taking \(x = Bz, y = Tz \) in (b), we get
\[
F_{P,Bz,QTz}(kt) \geq \min\{F_{F_{P,Bz,ABTz}}(t) \cdot F_{ST,Bz,QTz}(t + 0),
F_{P,Bz,ABTz}(t + 0) \cdot F_{ST,Bz,QTz}(t)\} \\
\geq \min\{F_{F_{Bz,Tz}}(t) \cdot F_{Bz,Tz}(t + 0),F_{Bz,Tz}(t + 0) \cdot F_{Bz,Tz}(t)\}
\geq F_{Bz,Tz}(t)
\]
Thus by Lemma 1.11, we get \(Bz = Tz \)
\(\therefore Bz \) is a common fixed point for \(P, Q, AB, ST \).
By Theorem 2.1, \(Bz = z = Tz \) is a common fixed point for \(P, Q, AB, ST \).
Since \(ABz = z \Rightarrow Az = z \) and \(STz = z \Rightarrow Sz = z \)
\(\therefore z \) is a common fixed point for \(A, B, S, T, P \) and \(Q \).
For uniqueness, let \(v \) be a common fixed point for \(A, B, S, T, P \) and \(Q \).
By taking \(x = z, y = v \) in condition (b), we get \(z = v \).
\(\therefore z \) is a unique common fixed point for \(A, B, S, T, P \) and \(Q \).

References

4. K.P.R. Sastry, G.A. Naidu, P.V.S. Prasad and S.S.A. Sastry: A common Fixed point Theorem in Menger probabilistic metric spaces using compatibility, Pre Print
5. **B. Schweizer and A. Sklar:** Probabilistic metric spaces, North Holland Series in Probability and applied Mathematics, 1983; MR0790314 (86g: 54045).

Received: April, 2010