On Dense Left Cancellative Languages

Jun Yang and Xingzhao Zhang

Department of Mathematics, Linyi Normal University
Shandong Linyi, 276005, P.R. China
yangjun.1963@163.com, zhxingzhao@163.com

Abstract

This paper is dedicated to study dense left cancellative languages. A characterization and some important properties of this class of languages are given by using some class of semi-singular words.

Keywords: Dense left cancellative language, Semi-singular word, Prefix code

1. Introduction

Let S be any semigroup and let

$$D(S) = \{ x \in S | xy = xz \text{ implies } y = z \text{ for all } y, z \in S \}.$$

Then $D(S)$ is a subsemigroup of S, it is not empty. We call $D(S)$ the left cancellative subsemigroup of S. Any element of $D(S)$ is called a left cancellative element of S, then S is a left cancellative semigroup. Similarly, we can define right cancellative subsemigroup and right cancellative element of S.

Left cancellative elements of the monoid of languages $M = 2^{A^*} \cup \{ \{1\} \}$ are called left cancellative languages. This class of languages has been characterized in [2]. It has been shown that every left singular language is a left cancellative element of M. It is clear that $D(M)$ is a monoid. $D(M)$ is a even sp-submonoid of $M([3])$ but not free.

Let S be a semigroup. A subset X of S is called dense in S if it meets all ideals of S. A dense subset in a tree monoid A^* over an alphabet A is called a dense language over A. The main task of this paper is to study the class
of dense left cancellative languages. We give a complete characterization of this class of languages by using some class of semi-singular words. Items not defined in this paper can be found in the books [4] and [5].

2. Main Results

Let $X \subseteq A^+$. For $v \in \mathbb{Z}^x$ and $x \in A^*$, we call vx X-semi-singular if and only if whenever $vxr = yz$ for some $y \in X$, and $r, z \in A^*$, then $y = v$. Let

$$S_X = \{x \in A^+ \mid vx \text{ is } X\text{-semi-singular for some } v \in \mathbb{Z}^x\}.$$

Let $G_X = S_X / S_XA^+$ be a prefix root of S_X. It is immediate that $S_XA^* \subseteq S_X$ and $S_X = G_XA^*$. Let

$$L_X = \{x \in A^+ \mid \text{there exists } p \in X \text{ such that } px \notin XA^+_x \}.$$

We call $x \in A^+$ X-inf-singular if the following conditions hold:

(i) $xA^* \subseteq L_X$.

(ii) $g \neq xm$ and $x \neq gm$ for any $g \in G_X$ (or equivalently $g \in S_X$) and $m \in A^*$.

We denote $I_X = \{x \in A^+ \mid x \text{ is } X\text{-inf-singular} \}$ and $H_X = I_X / I_XA^+$. It is easy to see that $I_XA^+ \subseteq I_X$ and $I_X = H_XA^*$.

Proposition 1 [1] Let $X \subseteq M$. Then $X \notin D(M)$ if and only if $XA^+ = AA^+_x$ for some $x \in A^+$, where $A^+_x = A^+ / \{x\}$.

Corollary 2 $X \in D(M)$ if and only if $L_X = A^+$.

Proposition 3 [1] Let $X \subseteq A^+$, and let $u \in A^+$. Then $u \in S_X$ if and only if $pu \notin XA^+_u$ and $puA^* \cap X = \emptyset$ for some $p \in X$ (or Z_X).

Corollary 4 Let $X \subseteq A^+$, then $S_X \subseteq L_X$.

Proposition 5 [2] Let $X \subseteq A^+$. Then the following statements are true:

1. $S_X \cap I_X = G_X \cap H_X = \emptyset$.
2. $G_X \cup H_X$ is a prefix code.
3. $X \in D(M)$ if and only if $G_X \cup H_X$ is a maximal prefix code.
Now, we are ready to define $S(M)$ and $I(M)$. Let $X \subseteq A^+$, X is said to be a semi-singular language (resp. inf-singular languages) if G_X (resp. H_X) is a maximal prefix code. The class of all semi-singular languages (resp. inf-singular languages) will be denoted by $S(M)$ (resp. $I(M)$). By Proposition 5, $S(M)$ and $I(M)$ are both contained in $D(M)$. Moreover, if $(x) \in S(M)$ (resp. $x \in I(M)$), then $I_X = H_X = \emptyset$ (resp. $S_X = D_X = \emptyset$). It is clear that if $l(X) \neq \emptyset$ then $S_X = A^+$ and $G_X = A$. Hence $S(M)$ contains all left singular languages. It is shown that $I_X = \emptyset$ if X is finite. Hence all finite languages are also contained in $S(M)$, and it has been proved that $S(M)$ is a subsemigroup of $D(M)$ in [4].

Let $X \subseteq A^+$. A word $x \in A^+$ is said to be X-thin-singular if and only if $px \not\in XA_X^+$ and $A^*xA^* \cap X = \emptyset$ for some $p \in X$ (or equivalently $p \in Z_X$). Let S'_X be the set of all X-thin-singular words and G'_X be the prefix root of S'_X. We call $x \in A^+$ X-dense-singular if the following conditions hold:

(i) $xA^* \subseteq L_X$;
(ii) $gx \neq xm$ and $x \neq gm$ for any $g \in G'_X$ (or equivalently $g \in S'_X$) and $m \in A^*$.

Let I'_X be the set of all X-dense-singular word and H'_X be the prefix root of I'_X.

Proposition 6 Let $X \subseteq A^+$. Then

1. $S'_X \subseteq S_X$ and $I_X \subseteq I'_X$.
2. $S'_XA^* \subseteq S_XA^*$. Hence $S'_X = G'_XA^*$.
3. $I'_XA^* \subseteq I'_X$. Hence $I'_X = H'_XA^*$.

Proof. (1) By the definition of S'_X and I'_X, this result is obvious.

(2) Let $x \in S'_X$ and $w \in A^*$. Then $xw \in S_XA^* \subseteq A^*$ and $A^*xA^* \cap X = \emptyset$, that is $xw \in S'_X$, hence $S'_X \subseteq S'_X$.

(3) Let $x \in I'_X$ and $w \in A^*$. Since $x \subseteq L_X$. We get $xwA^* \subseteq xA^* \subseteq L_X$. Let $g \in G'_X$ and $m \in A^*$, clearly, $g \neq xwm$. If $xw = gm$, then either g is a prefix of x or x is a prefix of g. Which is contradict to $x \in I'_X$. Hence $xw \neq gm$ and $xw \in I'_X$.

Lemma 7 [4] Let X and Y be two prefix codes. If $XA^* \cap YA^* = \emptyset$, then $X \cup Y$ is a prefix code.

Theorem 8 Let $X \subseteq A^+$, $T \subseteq L_X$ be any right ideal of A^* and $R = R(T)$ be a language such that $x \in R$ if and only if it satisfies the following two conditions:
(i) \(xA^* \subseteq L_X \);
(ii) \(g \neq xm \) and \(x \neq gm \) for any \(g \in Z_r \) (or equivalently \(g \in T \)) and \(m \in A^* \).

Then

(1) \(T \cap R = Z_r \cap Z_R = \emptyset \).
(2) \(Z_r \cup Z_R \) is a prefix code.
(3) \(X \in D(M) \) if and only if \(Z_r \cup Z_R \) is a maximal prefix code.

Proof. (1) By the definition of \(T \) and \(R \).

(2) Since \(T \) is a right ideal of \(A^* \), obviously, we can obtain \(T = Z_r A^* \). Similar to Item (3) of Proposition 6, we can prove that \(R \) is also a right ideal of \(A^* \). Hence \(R = Z_R A^* \). Now, by Item (1), we can get \(Z_r A^* \cap Z_R A^* = T \cap R = \emptyset \), hence \(Z_r \cup Z_R \) is a prefix code by lemma 7.

(3) Since \(X \in D(M) \), we have \(L_X = A^+ \) by corollary 4. Then \(x \in R \) if and only if \(g \neq xm \) and \(x \neq gm \) for any \(g \in Z_r \) and \(m \in A^* \). Let \(x \in A^+ / (Z_r \cup Z_R) \), then there exists \(g \in Z_r \cup Z_R \) such that either \(g \) is a prefix of \(x \) or \(x \) is a prefix of \(g \). It implies that \(Z_r \cup Z_R \) is not prefix code. Hence \(Z_r \cup Z_R \) is a maximal prefix code.

Suppose to the contrary that \(X \notin D(M) \). Then by Proposition 6, we can get \(XA^+ = XA_X^+ \) for some \(x \in A^+ \). Since \(Z_r \cup Z_R \) is a maximal prefix code, we have \(g = xm \) or \(x = gm \) for some \(g \in Z_r \cup Z_R \) and \(m \in A^* \).

(a) If \(g = xm \). Since \(XA^+ = XA_X^+ \), we have \(XA^+ = XA_g^+ \). Hence \(g \notin L_X \), by the definition of \(L_X \). Since \(Z_r \subseteq T \subseteq L_X \) and \(Z_r \subseteq R \subseteq L_X \), we have \(g \notin Z_r \cup Z_R \), this is a contradiction.

(b) If \(x = gm \). Then \(x \in T \subseteq L_X \) which is contradicts to \(XA^+ = XA_X^+ \).

Hence \(X \in D(M) \).

Notice that the above theorem is more general than Proposition 6. Furthermore, we have following corollary.

Corollary 9 Let \(X \subseteq A^+ \). Then the following are true:

(1) \(S'_X \cap I'_X = G'_X \cap H'_X = \emptyset \).
(2) \(G'_X \cup H'_X \) is a prefix code.
(3) \(X \in D(M) \) if and only if \(G'_X \cup H'_X \) is a maximal prefix code.

Proof. Since \(S'_X \subseteq L_X \) and by Item (2) of Proposition 6, \(S'_X \) is a right ideal of \(A^* \). If we let \(T = S'_X \) and \(R = R(T) = I'_X \), then \(T \) and \(R \) satisfy the
condition of Theorem 8. Thus all items in the corollary can be derived from this theorem.

Now, we can define $S'(M)$ and $I'(M)$. Let $X \subseteq A^*$, X is said to be a thin-singular language (resp. dense-singular language) if G'_X (resp. H'_X) is a maximal prefix code. The class of all thin-singular languages (resp. dense-singular languages) will be denoted by $S'(M)$ (resp. $I'(M)$). By the above corollary S, $S'(M)$ and $I'(M)$ are both contained in $D(M)$. Moreover, if $x \in D(M)$, (resp. $X \in I'(M)$), then $I'_X = H'_X = \emptyset$ (resp. $S'_X = G'_X = \emptyset$). It is clear that $S'(M) \subseteq S(M)$ and $I(M) \subseteq I'(M)$.

Theorem 10 Let $X \in D(M)$. Then
(1) X is thin if and only if X is thin-singular.
(2) X is dense if and only if X is dense-singular.

Proof. (1) if $X \in S'(M)$, then $S'_X \neq \emptyset$. Let $x \in S'_X$. Then $A^*xA^* \cap X = \emptyset$. Hence X is thin.

Conversely, if X is thin, then there exists $w \in A^+$ such that $A^*xA^* \cap X = \emptyset$. Hence $A^*xA^* \cap X = \emptyset$ for any $u \in A^*wA^*$. Since $X \in D(M)$, we have $pu \notin XA^+$ for some $p \in X$. Thus $u \in S'_X$ by the definition of S'_X. It suggests that $A^*wA^* \subseteq S'_X$. Now, for any $x \in A^+$, $xw \in A^*wA^* \subseteq S'_X$. It follows that $x \notin I'_A$. Then $H'_X = I'_X = \emptyset$. Since $X \in D(M)$, we have, by Corollary 9, G'_X is a maximal prefix code and $X \in S'(M)$.

(2) if $X \in I'(M)$, then $X \notin S'(M)$. Hence X is dense by Item(1).

Conversely, if X is dense, then for any $x \in A^+$, $A^*wA^* \cap X \neq \emptyset$. Hence $G'_x = S'_X = \emptyset$ and H'_X is a maximal prefix code by Corollary 9, that is $X \in I'(M)$.

References

Received: November, 2008