Endomorphism Rings of Small Pseudo Projective Modules

Ritu Jaiswal

Department Of Mathematics
Banaras Hindu University
Varanasi-221005, India
ritu11_bhu@yahoo.com

P. C. Bharadwaj

Department Of Mathematics
Banaras Hindu University
Varanasi-221005, India
drpcbharadwaj@yahoo.co.in

Abstract

In this paper I have tried to find some of the results on endomorphism rings of small pseudo projective modules.

Mathematics Subject Classification: 16D40

Keywords: Small pseudo projective modules, small pseudo stable submodule

1 Introduction

Throughout this paper the basic ring R is supposed to be ring with unity and all modules are unitary left R-modules.

Let M be an R-module, a submodule K of M is said to be small in M if $K + L = M \Rightarrow L = M$ for any submodule $L \subseteq M$. An R-module M is said to be hollow if all proper submodules of M are small in M. An R-module M is said to be small quasi projective if for any module A, with small epimorphism $g : M \to A$ and homomorphism $f : M \to A$ there exists an $h \in \text{End}(M)$ such that $f = goh$. An R-module M is said to be small pseudo projective if for any module A, with small epimorphism $g : M \to A$ and epimorphism $f : M \to A$ there exists an $h \in \text{End}(M)$ such that $f = goh$. A ring R is called regular
(in the sense of Von-Neumann) if for each \(r \in R \) there exists \(x \in R \) such that \(r = rxx \). The jacobson radical \(J(M) \), of a module \(M \), is the intersection of all maximal submodules of \(M \). An \(R \)-module \(M \) is called local if it has a unique maximal submodule which contains every proper submodules of \(M \). The socle of an \(R \) module \(M \) denoted by \(Soc(M) \) is defined as intersection of essential submodules of \(M \). A \(\mathbb{R} \)-module \(M \) is called local if it has a unique maximal submodule which contains every proper submodules of \(M \).

The socle of an \(\mathbb{R} \) module \(M \) denoted by \(Soc(M) \) is defined as intersection of essential submodules of \(M \). Two module epimorphisms \(f, g : P \to M \) are right equivalent if \(f = goh \) for some automorphism \(h \) of \(P \). An \(\mathbb{R} \) module \(M \) is called \(\pi \)-projective if for all submodules \(U \) and \(V \) of \(M \) with \(U + V = M \), there exists \(f \in S \) with \(Imf \subseteq U \) and \(Im(1 - f) \subseteq V \). A submodule \(N \) of an \(\mathbb{R} \)-module \(M \) is said to be small pseudo stable if for any epimorphism \(f : M \to A \) and any small epimorphism \(g : M \to A \) with \(N \subseteq Kerg \cap Kerf \), there exists \(h \in End(M) \) such that \(f = goh \) then, \(h(N) \subseteq N \). A module \(M \) is called a duo module if every submodule of \(M \) is fully invariant.

2 Main Results

Proposition 1. Let \(M \) be any small pseudo projective hollow module. Then every epimorphism in \(End(M) \) is an automorphism.

Proof: Let \(g : M \to M \) be any epimorphism then we have \(Kerg \neq M \). So, \(Kerg \) is a proper submodule of \(M \). As \(M \) is hollow, \(g \) is a small epimorphism, by small pseudo projectivity of \(M \), \(I_M \) can be lifted to a homomorphism \(h : M \to M \) such that \(goh = I_M \).

\[\Rightarrow h \text{ is one-one.} \]

Let \(m \in M \) then as \(g \) is onto there exists an element \(n \in M \) such that \(m = g(n) \Rightarrow g(n - h(m)) = 0 \Rightarrow n - h(m) \in Kerg \Rightarrow n \in Kerg + h(m) \Rightarrow M \subseteq Kerg + Imh. \) So, we have \(M = Kerg + Imh \Rightarrow M = Imh \), since \(M \) is hollow. Thus \(h \) is onto and so \(h \) is an automorphism \(\Rightarrow h^{-1} = g \) is an automorphism.

Proposition 2. (a) If \(S \) is the endomorphism ring of a small quasi projective hollow module \(M \) then \(S \) is local.

(b) If \(S \) is the endomorphism ring of a small pseudo projective hollow module \(M \) then \(S \) is local.

Proof: Follows from [1, Theorem 1.14]

Proposition 3. Let \(M \) be any pseudo projective module and \(End(M) \) denotes the endomorphism ring of \(M \). Then if \(\alpha(M) \subseteq^\oplus M \) for every \(\alpha \in End(M) \) then \(ker\alpha \subseteq^\oplus M \).

Proof: Follows from [7, Proposition 8].
Proposition 4. Let M be any pseudo projective module and $\text{End}(M)$ denotes the endomorphism ring of M. Then if $\alpha(M) \subseteq M$ for every $\alpha \in \text{End}(M)$ then $\text{End}(M)$ is regular.

Proof: Follows from [7, Proposition 10].

Corollary 4.1: Endomorphism ring of a completely reducible pseudo projective module is regular.

Proposition 5. Let M be a small pseudo projective hollow module S denotes the endomorphism ring of M, $J(S)$ denotes the jacobson radical of S then
(a) $J(S) = \{ \alpha \in S | \text{Im} \alpha \text{ is small in } M \}$
(b) $J(S) \subseteq \text{Hom}(M, J(M))$
(c) $S/J(S)$ is von-neumann regular ring.

Proof: Follows from [1, Theorem 1.15]

Proposition 6. Let M be a small pseudo projective hollow module and K be any small submodule of M then for any automorphism $g \in \text{Aut}(M/K)$ there exists an automorphism $h \in \text{Aut}(M)$ such that $g(m + K) = h(m) + K \ \forall m \in M$.

Proof: Let K be any small submodule of M and $\nu : M \rightarrow M/K$ be any natural map, and $g : M/K \rightarrow M/K$ be any automorphism in $\text{Aut}(M/K)$. Then by small pseudo projectivity of $M \exists h \in \text{End}(M)$ such that $g \nu = \nu h$ i.e. $g \nu(m) = \nu h(m) \forall m \in M \Rightarrow g(m + K) = h(m) + K \ \forall m \in M$. Then by [5, Proposition 4] h is an epi-endomorphism. By Proposition 1 we get h is an automorphism.

Proposition 7. Let M be a small pseudo projective hollow module then for any $\alpha \in \text{End}(M)$ and any small submodule K of M with $\alpha(M) + K = M$ and $\alpha^{-1}(K) = K$ there exists $\beta \in \text{End}(M)$ such that $\beta(M) \subseteq K$ and $\alpha + \beta \in \text{Aut}(M)$.

Proof: Suppose $\alpha \in \text{End}(M)$ and K is any small submodule of M satisfying $\alpha(M) + K = M$ and $\alpha^{-1}(K) = K$. Let $f : M \rightarrow M/K$ be the natural map. Now we have $\text{Ker}(f \alpha) = \alpha^{-1}(\text{Ker} f) = \alpha^{-1}(K) = K = \text{Ker} f$. Thus, $\text{Ker}(f \alpha) = \text{Ker} f$. Now, $\alpha(M) + K = M \Rightarrow \alpha(M) = M \Rightarrow \alpha$ is onto and therefore $f \alpha$ is onto. So by [2, Theorem 3.6] \exists an automorphism $g \in \text{End}(M/K) \ni \text{gof} = f \alpha$. So by assumption there exists $h \in \text{Aut}(M)$ such that $g(m + K) = h(m) + K \Rightarrow g(M/K) = foh(M) \Rightarrow \text{gof} (M) = foh(M) \Rightarrow \text{gof} = foh \Rightarrow f \alpha = foh \Rightarrow f(h - \alpha) = 0$. Let $\beta = h - \alpha$. We have $\beta(M) \subseteq K$. Also $\alpha + \beta = h$ is an automorphism in $\text{Aut}(M)$.
Proposition 8. Let M be a small pseudo projective hollow module then any pair of small epimorphisms from M to any module N are right equivalent if for given any $\alpha \in \text{End}(M)$ and any small submodule K of M there exists $\beta \in \text{End}(M)$ such that $\beta(M) \subseteq K$ and $\alpha + \beta \in \text{Aut}(M)$.

Proof: Suppose $f, g : M \to N$ are small epimorphism. By small pseudo projective of M there exists $\alpha \in \text{End}(M)$ such that $f = go\alpha$. Since f is epimorphism we have $\alpha(M) + \text{Ker}(g) = M$ then by assumption there exists $\beta \in \text{End}(M)$ such that $\alpha + \beta \in \text{Aut}(M)$ and $\beta(M) \subseteq K$. So $g(\alpha + \beta) = go\alpha + go\beta = go\alpha = f$. So, f and g are right equivalent.

Proposition 9. Let M be a duo and small pseudo projective module. Let S denotes the endomorphism ring of M and $T = \{\alpha \in S|\text{Im } \alpha \text{ is small in } M\}$. Then for every $f \in T$, $\text{Im } f$ is a small pseudo stable submodule of M.

Proof: Let $f \in T$ then $\text{Im } f$ is a small submodule of M. Let $g : M/\text{Im } f \to A$ be a small epimorphism, $\psi : M/\text{Im } f \to A$ be an epimorphism and $\nu : M \to M/\text{Im } f$ be the natural map. Then $\text{Ker } \nu = \text{Im } f$ is a small submodule of $M \Rightarrow \nu$ is a small epimorphism. Now, $\text{Im } f \subseteq \text{Ker}(g\nu) \cap \text{Ker}(\psi \nu)$, since $\text{Ker } \nu = \text{Im } f \Rightarrow \nu(\text{Im } f) = 0 \Rightarrow g(\nu(\text{Im } f)) = 0 \Rightarrow \text{Im } f \subseteq \text{Ker}(g\nu)$. Similarly $\text{Im } f \subseteq \text{Ker}(\psi \nu))$. By small pseudo projectivity of M there exists $h \in \text{End}(M)$ such that $\psi \nu = g\nu h$. We have, $h(\text{Im } f) \subseteq \text{Im } f$, since M is duo and $\text{Im } f \subseteq M$. So, $\text{Im } f$ is a small pseudo stable submodule of M.

Proposition 10. Let M be a duo and small pseudo projective hollow module. Let S denotes the endomorphism ring of M and $J(S)$ denotes the jacobson radical of M. Then for every $f \in J(S)$, $\text{Im } f$ is a small pseudo stable submodule of M.

Proof: By Proposition 5(a), we have $T = J(S)$. Rest of the proof follows from Proposition 9.

Proposition 11. Let M be a small pseudo projective module if S is local and M is π-projective then M is hollow.

Proof: Let U and V be submodules of M such that $U + V = M$. As M is π-projective there exists $f \in S$ such that $\text{Im } f \subseteq U$ and $\text{Im }(1 - f) \subseteq V$. Now S is local so, $f \in S \Rightarrow$ either f or $(1 - f)$ is invertible. Now f is invertible $\Rightarrow \exists$ $g \in S \ni fog = I_M \Rightarrow f$ is onto and so $\text{Im } f = M \Rightarrow U = M$. Thus V is small. Similarly we can show that when $(1 - f)$ is invertible then $V = M$ $\Rightarrow U$ is small, and therefore M is hollow.

Proposition 12. Let M be a small pseudo projective $D2$ module. Then M is $S.F.$

Proof: Follows from [5, Proposition 3]
Proposition 13. Let M be a small quasi projective duo module. If $S = \text{End}(M)$, is local, then M is not supplemented.

Proof: Suppose that M is supplemented and A is any submodule of M. Let B be supplement of A in M then we have $M = A + B$ and $A \cap B$ is small in M. Let $0 \neq s(M) = A$ and $0 \neq t(M) = B$, $s,t \in S$. Define the map $f : M = (s + t)(M) \to M/(A \cap B)$ such that $f(s + t)(m) = s(m) + (A \cap B)$. For any $m, m' \in M$, $(s + t)(m) = (s + t)(m')$ implies that $s(m - m') = t(m' - m) \in A \cap B$. So $s(m) + (A \cap B) = s(m') + (A \cap B)$. Thus f is well defined and f is also an R-homomorphism. Let $\nu : M \to M/(A \cap B)$ is the natural map. By small quasi projectivity of M, there exist $g \in S$ such that $\nu og = f$. We have $\nu og(s + t)(m) = f(s + t)(m) = s(m) + (A \cap B)$. Then, $g(s + t)(m) + (A \cap B) = s(m) + (A \cap B) \Rightarrow ((1 - g)os - got)(M) \subseteq (A \cap B)$. Since S is local, g or $(1 - g)$ is invertible. If $(1 - g)$ is invertible we have, $(s - (1 - g)^{-1}got)(M) \subseteq (1 - g)^{-1}(A \cap B) \subseteq (A \cap B)$. Now $A \subseteq (s - (1 - g)^{-1}got)(M) \subseteq (A \cap B)$. Then $A \subseteq (A \cap B)$, which is a contradiction. Similarly if g is invertible we have $B \subseteq (g^{-1}os - t) \subseteq g^{-1}(A \cap B) \subseteq (A \cap B)$. Then $B \subseteq (A \cap B)$, that is also a contradiction. Hence M is not supplemented.

Corollary 13.1: Let M be a hollow small quasi projective duo module. Then M is not supplemented.

Proof: Follows from Proposition 2(a) and Proposition 13.

References

Received: Received: August, 2009