Bicontinuous Maps in Biclosure Spaces

Chawalit Boonpok

Department of Mathematics
Faculty of Science
Mahasarakham University
Mahasarakham 44150, Thailand
chawalit_boonpok@hotmail.com

Abstract
The purpose of this paper is to introduce and study the concept of biclosure spaces. We introduce the notion of bicontinuous maps in biclosure spaces and investigate its behaviour.

Mathematics Subject Classification: 54A01

Keywords: closure operator, closure space, biclosure space, bicontinuous map

1 INTRODUCTION

J.C. Kelly [6] introduce the notion of bitopological spaces. Such spaces are equipped with two arbitrary topologies. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space. Thereafter, a large number of papers have been written to generalize topological concepts to bitopological setting. Closure spaces were introduced by E. Čech [2] and then studied by many authors, see e.g. [3, 4, 7, 8]. In this paper we introduce and study the concept of biclosure spaces. We introduce the concept of bicontinuous maps in biclosure space and characterize their properties.

2 PRELIMINARIES

A map \(u : P(X) \rightarrow P(X) \) defined on the power set \(P(X) \) of a set \(X \) is called a closure operator on \(X \) and the pair \((X, u) \) is called a closure space if the following axioms are satisfied:

\[(N1) \ u \emptyset = \emptyset,\]
(N2) $A \subseteq uA$ for every $A \subseteq X$,

(N3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

A closure operator u on a set X is called additive (respectively, idempotent) if $A, B \subseteq X \Rightarrow u(A \cup B) = uA \cup uB$ (respectively, $A \subseteq X \Rightarrow uuA = uA$). A subset $A \subseteq X$ is closed in the closure space (X, u) if $uA = A$ and it is open if its complement in X is closed. The empty set and the whole space are both open and closed. A closure space (Y, v) is said to be a subspace of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too. Let (X, u) and (Y, v) be closure spaces. A map $f : (X, u) \rightarrow (Y, v)$ is said to be continuous if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

One can see that a map $f : (X, u) \rightarrow (Y, v)$ is continuous if and only if $uf^{-1}(B) \subseteq f^{-1}(vB)$ for every subset $B \subseteq Y$.

Clearly, if $f : (X, u) \rightarrow (Y, v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X, u) for every subset F of (Y, v).

Let (X, u) and (Y, v) be closure spaces. A map $f : (X, u) \rightarrow (Y, v)$ is said to be closed (resp. open) if $f(F)$ is a closed (resp. open) subset of (Y, v) whenever F is a closed (resp. open) subset of (X, u).

The product of a family $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$, is the closure space $(\prod_{\alpha \in I} X_\alpha, u)$ where $\prod_{\alpha \in I} X_\alpha$ denotes the cartesian product of sets X_α, $\alpha \in I$, and u is the closure operator generated by the projections $\pi_\alpha : \prod_{\alpha \in I} X_\alpha \rightarrow X_\alpha$, $\alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_\alpha \pi_\alpha(A)$ for each $A \subseteq \prod_{\alpha \in I} X_\alpha$.

Clearly, if $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ is a family of closure spaces, then the projection map $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \rightarrow (X_\beta, u_\beta)$ is closed and continuous for every $\beta \in I$.

Proposition 2.1. Let $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a closed subset of (X_β, u_β) if and only if $F \times \prod_{\alpha \neq \beta} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$.

Proof. Let F be a closed subset of (X_β, u_β). Since π_β is continuous, $\pi_\beta^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$. But $\pi_\beta^{-1}(F) = F \times \prod_{\alpha \neq \beta} X_\alpha$, hence $F \times \prod_{\alpha \neq \beta} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$.

Conversely, let $F \times \prod_{\alpha \neq \beta} X_\alpha$ be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$. Since π_β is closed, $\pi_\beta(F \times \prod_{\alpha \neq \beta} X_\alpha) = F$ is a closed subset of (X_β, u_β). \qed
The following statement is evident:

Proposition 2.2. Let \(\{(X_\alpha, u_\alpha) : \alpha \in I\} \) be a family of closure spaces and let \(\beta \in I \). Then \(G \) is an open subset of \((X_\beta, u_\beta) \) if and only if \(G \times \prod_{\alpha \in I ; \alpha \neq \beta} X_\alpha \) is an open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \).

3 BICLOSURE SPACES

In this section, we introduce the notion of biclosure spaces and investigate some of its basic properties.

Definition 3.1. A biclosure space is a triple \((X, u_1, u_2) \) where \(X \) is a set and \(u_1, u_2 \) are two closure operators on \(X \).

Definition 3.2. A subset \(A \) of a biclosure space \((X, u_1, u_2) \) is called closed if \(u_1u_2A = A \). The complement of closed set is called open.

Clearly, \(A \) is a closed subset of a biclosure space \((X, u_1, u_2) \) if and only if \(A \) is both a closed subset of \((X, u_1) \) and \((X, u_2) \).

Let \(A \) be a closed subset of a biclosure space \((X, u_1, u_2) \). The following conditions are equivalent

(i) \(u_1u_2A = A \),

(ii) \(u_1A = A, u_2A = A \).

The following statement is evident:

Proposition 3.3. Let \((X, u_1, u_2) \) be a biclosure space. If \(A \) and \(B \) are closed subsets of \((X, u_1, u_2) \), then so is \(A \cap B \).

The union of two closed sets need not be closed as can be seen from the following example.

Example 3.4. Let \(X = \{1, 2, 3\} \) and define a closure operator \(u_1 \) on \(X \) by \(u_1\emptyset = \emptyset, u_1\{1\} = \{1\}, u_1\{2\} = \{2\}, u_1\{3\} = \{3\} \) and \(u_1\{1, 2\} = u_1\{1, 3\} = u_1\{2, 3\} = u_1X = X \). Define a closure operator \(u_2 \) on \(X \) by \(u_2\emptyset = \emptyset, u_2\{1\} = \{1\}, u_2\{2\} = \{2\}, u_2\{1, 2\} = \{1, 2\} \) and \(u_2\{3\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X \). Then \(\{1\} \) and \(\{2\} \) are closed. But \(\{1\} \cup \{2\} = \{1, 2\} \) is not closed.

Proposition 3.5. Let \((X, u_1, u_2) \) be a biclosure space and let \(u_1 \) and \(u_2 \) be additive. If \(A \) and \(B \) are closed subset of \((X, u_1, u_2) \), then so is \(A \cup B \).

Proof. Since \(u_1u_2A = A \) and \(u_1u_2B = B \), \(u_1u_2A \cup u_1u_2B = A \cup B \). Since \(u_1 \) and \(u_2 \) are additive, \(u_1u_2(A \cup B) = u_1(u_2A \cup u_2B) = u_1u_2A \cup u_1u_2B = A \cup B \). Therefore, \(A \cup B \) is closed. \(\square \)
The following statement is obvious:

Proposition 3.6. Let \((X, u_1, u_2)\) be a biclosure space and let \(A \subseteq X\). Then

(i) \(A\) is open if and only if \(A = X - u_1u_2(X - A)\).

(ii) If \(G\) is open and \(G \subseteq A\), then \(G \subseteq X - u_1u_2(X - A)\).

Definition 3.7. Let \((X, u_1, u_2)\) be a biclosure space. A biclosure space \((Y, v_1, v_2)\) is called a subspace of \((X, u_1, u_2)\) if \(Y \subseteq X\) and \(v_iA = u_iA \cap Y\) for each \(i \in \{1, 2\}\) and each subset \(A \subseteq Y\).

Proposition 3.8. Let \((X, u_1, u_2)\) be a biclosure space and let \((Y, v_1, v_2)\) be a closed subspace of \((X, u_1, u_2)\). If \(F\) is a closed subset of \((Y, v_1, v_2)\), then \(F\) is a closed subset of \((X, u_1, u_2)\).

Proof. Let \(F\) be a closed subset of \((Y, v_1, v_2)\). Then \(v_1F = F\) and \(v_2F = F\). Since \(Y\) is both a closed subset of \((X, u_1)\) and \((X, u_2)\), \(u_1F = F\) and \(u_2F = F\). Consequently, \(F\) is both a closed subset of \((X, u_1)\) and \((X, u_2)\). Therefore, \(F\) is a closed subset of \((X, u_1, u_2)\). \(\Box\)

Proposition 3.9. Let \(\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\}\) be a family of biclosure spaces and let \(\beta \in I\). Then \(F\) is a closed subset of \((X_\beta, u^1_\beta, u^2_\beta)\) if and only if \(F \times \prod\limits_{\alpha \neq \beta} (X_\alpha, u^1_\alpha, u^2_\alpha)\) is a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha)\).

Proof. Let \(\beta \in I\) and let \(F\) be a closed subset of \((X_\beta, u^1_\beta, u^2_\beta)\). Then \(F\) is a closed subset of \((X_\beta, u^1_\beta)\) and \((X_\beta, u^2_\beta)\), respectively. Since \(\pi_\beta : \prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha) \to (X_\beta, u^1_\beta)\) is continuous, \(\pi_\beta^{-1}(F) = F \times \prod\limits_{\alpha \in I, \alpha \neq \beta} X_\alpha\) is a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha)\).

Similarly, since \(\pi_\beta : \prod\limits_{\alpha \in I} (X_\alpha, u^2_\alpha) \to (X_\beta, u^2_\beta)\) is continuous, \(\pi_\beta^{-1}(F) = F \times \prod\limits_{\alpha \in I, \alpha \neq \beta} X_\alpha\) is a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^2_\alpha)\). Consequently, \(F \times \prod\limits_{\alpha \in I} X_\alpha\) is a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha)\).

Conversely, let \(F \times \prod\limits_{\alpha \in I} X_\alpha\) be a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha)\). Then \(F \times \prod\limits_{\alpha \in I} X_\alpha\) is a closed subset of \(\prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha)\) and \(\prod\limits_{\alpha \in I} (X_\alpha, u^2_\alpha)\), respectively. Since \(\pi_\beta : \prod\limits_{\alpha \in I} (X_\alpha, u^1_\alpha) \to (X_\beta, u^1_\beta)\) is closed, \(\pi_\beta(F \times \prod\limits_{\alpha \in I} X_\alpha) = F\) is a closed subset of \((X_\beta, u^1_\beta)\). Similarly, since \(\pi_\beta : \prod\limits_{\alpha \in I} (X_\alpha, u^2_\alpha) \to (X_\beta, u^2_\beta)\) is closed, \(\pi_\beta(F \times \prod\limits_{\alpha \in I} X_\alpha) = F\) is a closed subset of \((X_\beta, u^2_\beta)\). Consequently, \(F\) is a closed subset of \((X_\beta, u^1_\beta, u^2_\beta)\). \(\Box\)
Proposition 3.10. Let \(\{(X_\alpha, u^{1}_\alpha, u^{2}_\alpha) : \alpha \in I \} \) be a family of biclosure spaces and let \(\beta \in I \). Then \(G \) is an open subset of \((X_\beta, u^{1}_\beta, u^{2}_\beta) \) if and only if \(G \times \prod_{\alpha \neq \beta} X_\alpha \) is an open subset of \(\prod_{\alpha \in I} (X_\alpha, u^{1}_\alpha, u^{2}_\alpha) \).

Proof. Let \(\beta \in I \) and let \(G \) be an open subset of \((X_\beta, u^{1}_\beta, u^{2}_\beta) \). Then \(X_\beta - G \) is a closed subset of \((X_\beta, u^{1}_\beta, u^{2}_\beta) \). By Proposition 3.9, \((X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \neq \beta} X_\alpha \). By Proposition 3.9, \((X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \neq \beta} X_\alpha \). Therefore, \(G \times \prod_{\alpha \in I} X_\alpha \) is an open subset of \(\prod_{\alpha \in I} (X_\alpha, u^{1}_\alpha, u^{2}_\alpha) \).

Conversely, let \(G \times \prod_{\alpha \in I} X_\alpha \) be an open subset of \(\prod_{\alpha \in I} (X_\alpha, u^{1}_\alpha, u^{2}_\alpha) \). Then \(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u^{1}_\alpha, u^{2}_\alpha) \). But \(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha = (X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \), hence \((X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u^{1}_\alpha, u^{2}_\alpha) \). By Proposition 3.9, \(X_\beta - G \) is a closed subset of \((X_\beta, u^{1}_\beta, u^{2}_\beta) \). Consequently, \(G \) is an open subset of \((X_\beta, u^{1}_\beta, u^{2}_\beta) \).

4 Bicontinuous Maps

In this section, we introduce the concept of bicontinuous maps in biclosure spaces and study some of their properties.

Definition 4.1. Let \((X, u_1, u_2) \) and \((Y, v_1, v_2) \) be biclosure spaces and let \(i \in \{1,2\} \). A map \(f : (X, u_i, u_2) \to (Y, v_1, v_2) \) is called \(i \)-continuous if the map \(f : (X, u_i) \to (Y, v_i) \) is continuous. A map \(f \) is called continuous if \(f \) is \(i \)-continuous for each \(i \in \{1,2\} \).

Definition 4.2. Let \((X, u_1, u_2) \) and \((Y, v_1, v_2) \) be biclosure spaces. A map \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) is called bicontinuous if the map \(f : (X, u_1) \to (Y, v_2) \) is continuous.

Proposition 4.3. Let \((X, u_1, u_2) \) and \((Y, v_1, v_2) \) be biclosure spaces. Then \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) is bicontinuous if and only if \(u_1 f^{-1}(B) \subseteq f^{-1}(v_2 B) \) for every \(B \subseteq Y \).

Proof. Let \(B \subseteq Y \). Then \(f^{-1}(B) \subseteq X \). Since \(f \) is bicontinuous, \(f(u_1 f^{-1}(B)) \subseteq v_2 f(f^{-1}(B)) \subseteq v_2 B \). Therefore, \(u_1 f^{-1}(B) \subseteq f^{-1}(v_2 B) \).
Conversely, let \(A \subseteq X \). Then \(f(A) \subseteq Y \). Thus \(u_1 f^{-1}(f(A)) \subseteq f^{-1}(v_2 f(A)) \). Consequently, \(f(u_1 A) \subseteq f(u_1 f^{-1}(f(A))) \subseteq f(f^{-1}(v_2 f(A))) \subseteq v_2 f(A) \). Hence, \(f \) is bicontinuous.

Proposition 4.4. Let \((X, u_1, u_2)\), \((Y, v_1, v_2)\) and \((Z, w_1, w_2)\) be biclosure spaces. If \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) is bicontinuous and \(g : (Y, v_1, v_2) \to (Z, w_1, w_2) \) is 2-continuous, then \(g \circ f : X \to Z \) is bicontinuous.

Proof. Let \(A \subseteq X \). Since \(g \circ f(u_1 A) = g(f(u_1 A)) \) and \(f \) is bicontinuous, \(g(f(u_1 A)) \subseteq g(v_2 f(A)) \). Since \(g \) is 2-continuous, \(g(v_2 f(A)) \subseteq w_2 g(f(A)) \). Thus \(g \circ f(u_1 A) \subseteq w_2 g \circ f(A) \). Consequently, \(g \circ f \) is bicontinuous.

Definition 4.5. Let \((X, u_1, u_2)\) and \((Y, v_1, v_2)\) be biclosure spaces and let \(i \in \{1, 2\}\). A map \(f : (X, u_i) \to (Y, v_i) \) is called \(i\)-closed (resp. \(i\)-open) if the map \(f : (X, u_i) \to (Y, v_i) \) is closed (resp. open). A map \(f \) is called closed (resp. open) if \(f \) is \(i\)-closed (resp. \(i\)-open) for each \(i \in \{1, 2\} \).

Definition 4.6. Let \((X, u_1, u_2)\) and \((Y, v_1, v_2)\) be biclosure spaces. A map \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) is called biclosed (resp. biopen) if the map \(f : (X, u_1) \to (Y, v_2) \) is closed (resp. open).

Proposition 4.7. Let \((X, u_1, u_2)\), \((Y, v_1, v_2)\) and \((Z, w_1, w_2)\) be biclosure spaces. If \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) is 1-closed and \(g : (Y, v_1, v_2) \to (Z, w_1, w_2) \) is biclosed, then \(g \circ f : (X, u_1, u_2) \to (Z, w_1, w_2) \) is biclosed.

Proof. Let \(F \) be a closed subset of \((X, u_1)\). Since \(f \) is 1-closed, \(f(F) \) is a closed subset of \((Y, v_1)\). Since \(g \) is biclosed, \(g(f(F)) \) is a closed subset of \((Z, w_2)\). Hence, \(g \circ f(F) \) is a closed subset of \((Z, w_2)\). Consequently, \(g \circ f \) is biclosed.

Proposition 4.8. Let \((X, u_1, u_2)\), \((Y, v_1, v_2)\) and \((Z, w_1, w_2)\) be biclosure spaces. Let \(f : (X, u_1, u_2) \to (Y, v_1, v_2) \) and \(g : (Y, v_1, v_2) \to (Z, w_1, w_2) \) be maps. Then

(i) If \(g \circ f \) is biclosed and \(f \) is surjective 1-continuous, then \(g \) is biclosed.

(ii) If \(g \circ f \) is biclosed and \(g \) is injective 2-continuous, then \(f \) is biclosed.

Proof. (i) Let \(F \) be a closed subset of \((Y, v_1)\). Since \(f \) is 1-continuous, \(f^{-1}(F) \) is a closed subset of \((X, u_1)\). Since \(g \circ f \) is biclosed and \(f \) is surjective, \(g \circ f(f^{-1}(F)) = g(F) \) is a closed subset of \((Z, w_2)\). Hence, \(g \) is biclosed.

(ii) Let \(F \) be a closed subset of \((X, u_1)\). Since \(g \circ f \) is biclosed, \(g \circ f(F) \) is a closed subset of \((Z, w_2)\). Since \(g \) is 2-continuous and injective, \(g^{-1}(g \circ f(F)) = f(F) \) is a closed subset of \((Y, v_2)\). Therefore, \(f \) is biclosed.

The following statement is evident:
Proposition 4.9. Let \(\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\} \) be a family of biclosure spaces. Then for each \(\beta \in I \), the projection map \(\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha) \rightarrow (X_\beta, u^1_\beta, u^2_\beta) \) is closed.

Proposition 4.10. Let \(\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\} \) and \(\{(Y_\alpha, v^1_\alpha, v^2_\alpha) : \alpha \in I\} \) be families of biclosure spaces. For each \(\alpha \in I \), let \(f_\alpha : (X_\alpha, u^1_\alpha, u^2_\alpha) \rightarrow (Y_\alpha, v^1_\alpha, v^2_\alpha) \) be a surjection and let \(f : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \rightarrow \prod_{\alpha \in I} (Y_\alpha, v^1_\alpha, v^2_\alpha) \) be defined by \(f((x_\alpha)_{\alpha \in I}) = (f_\alpha(x_\alpha))_{\alpha \in I} \). Then \(f \) is biclosed if and only if \(f_\alpha \) is biclosed for each \(\alpha \in I \).

Proof. Let \(\beta \in I \) and let \(F \) be a closed subset of \((X_\beta, u^1_\beta) \). Then \(F \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u^1_\alpha) \). Since \(f \) is biclosed, \(f(F \times \prod_{\alpha \in I} X_\alpha) \) is a closed subset of \(\prod_{\alpha \in I} (Y_\alpha, v^2_\alpha) \). But \(f(F \times \prod_{\alpha \in I} X_\alpha) = f_\beta(F) \times \prod_{\alpha \in I} Y_\alpha \), hence \(f_\beta(F) \times \prod_{\alpha \in I} Y_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (Y_\alpha, v^2_\alpha) \). By Proposition 2.1, \(f_\beta(F) \) is a closed subset of \((Y_\beta, v^2_\beta) \). Hence, \(f_\beta \) is biclosed.

Conversely, let \(f_\beta \) be biclosed for each \(\beta \in I \). Suppose that \(f \) is not biclosed. Then there exists a closed subset \(F \) of \(\prod_{\alpha \in I} (X_\alpha, u^1_\alpha) \) such that \(\prod_{\alpha \in I} v^2_\alpha \pi_\beta(f(F)) \nsubseteq f(F) \). Therefore, there exists \(\beta \in I \) such that \(v^2_\beta f_\beta(\pi_\beta(F)) \nsubseteq f_\beta(\pi_\beta(F)) \). But \(\pi_\beta(F) \) is a closed subset of \((X_\beta, u^1_\beta) \) and \(f_\beta \) is biclosed, \(f_\beta(\pi_\beta(F)) \) is a closed subset of \((Y_\beta, v^2_\beta) \). This is a contradiction.

The following statement is evident:

Proposition 4.11. Let \(\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\} \) be a family of biclosure spaces. Then for each \(\beta \in I \), the projection map \(\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha) \rightarrow (X_\beta, u^1_\beta, u^2_\beta) \) is continuous.

Proposition 4.12. Let \((X, u_1, u_2) \) be a biclosure space, \(\{(Y_\alpha, v^1_\alpha, v^2_\alpha) : \alpha \in I\} \) be a family of biclosure spaces and \(f : (X, u_1, u_2) \rightarrow \prod_{\alpha \in I} (Y_\alpha, v^1_\alpha, v^2_\alpha) \) be a map. Then \(f \) is bicontinuous if and only if \(\pi_\alpha \circ f \) is bicontinuous for each \(\alpha \in I \).

Proof. Let \(f \) be bicontinuous. Since \(\pi_\alpha \) is 2-continuous for each \(\alpha \in I \), \(\pi_\alpha \circ f \) is bicontinuous for each \(\alpha \in I \).

Conversely, let \(\pi_\alpha \circ f \) be bicontinuous for each \(\alpha \in I \). Suppose that \(f \) is not bicontinuous. Then there exists a subset \(A \) of \(X \) such that \(f(u_1A) \nsubseteq \prod_{\alpha \in I} v^2_\alpha \pi_\alpha(f(A)) \). Therefore, there exists \(\beta \in I \) such that \(\pi_\beta(f(u_1A)) \nsubseteq v^2_\beta \pi_\beta(f(A)) \). This is contradict the bicontinuity of \(\pi_\beta \circ f \). Consequently, \(f \) is bicontinuous.
Proposition 4.13. Let \(\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\} \) and \(\{(Y_\alpha, v^1_\alpha, v^2_\alpha) : \alpha \in I\} \) be families of biclosure spaces. For each \(\alpha \in I \), let \(f_\alpha : (X_\alpha, u^1_\alpha) \rightarrow (Y_\alpha, v^1_\alpha) \) be a map and let \(f : \prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha) \rightarrow \prod_{\alpha \in I} (Y_\alpha, v^1_\alpha, v^2_\alpha) \) be defined by \(f((x_\alpha)_{\alpha \in I}) = (f_\alpha(x_\alpha))_{\alpha \in I} \). Then \(f \) is bicontinuous if and only if \(f_\alpha \) is bicontinuous for each \(\alpha \in I \).

Proof. Let \(f \) be bicontinuous, let \(\beta \in I \) and let \(A \subseteq X_\beta \). Then

\[
f_\beta(u^1_\beta A) = \pi_\beta \left(f_\beta(u^1_\beta A) \times \prod_{\alpha \neq \beta \atop \alpha \in I} f_\alpha(u^1_\alpha X_\alpha) \right)
= \pi_\beta \left(f \left(u^1_\beta A \times \prod_{\alpha \neq \beta \atop \alpha \in I} u^1_\alpha X_\alpha \right) \right)
= \pi_\beta \left(f \left(\prod_{\alpha \in I} u^1_\alpha \pi_\alpha \left(A \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_\alpha \right) \right) \right)
\subseteq \pi_\beta \left(\prod_{\alpha \in I} v^2_\alpha \pi_\alpha \left(f \left(A \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_\alpha \right) \right) \right)
= \pi_\beta \left(\prod_{\alpha \in I} v^2_\alpha \pi_\alpha \left(f_\beta(A) \times \prod_{\alpha \neq \beta \atop \alpha \in I} f_\alpha(X_\alpha) \right) \right)
= \pi_\beta \left(v^2_\beta f_\beta(A) \times \prod_{\alpha \neq \beta \atop \alpha \in I} v^2_\alpha f_\alpha(X_\alpha) \right)
= v^2_\beta f_\beta(A).
\]

Hence, \(f_\beta \) is bicontinuous.

Conversely, let \(f_\alpha \) be bicontinuous for each \(\alpha \in I \) and let \(A \subseteq \prod_{\alpha \in I} X_\alpha \). Then

\[
f(\prod_{\alpha \in I} u^1_\alpha \pi_\alpha(A)) = \prod_{\alpha \in I} f_\alpha(\prod_{\alpha \in I} u^1_\alpha \pi_\alpha(A))
= \prod_{\alpha \in I} f_\alpha(u^1_\alpha \pi_\alpha(A))
\subseteq \prod_{\alpha \in I} v^2_\alpha f_\alpha(\pi_\alpha(A))
= \prod_{\alpha \in I} v^2_\alpha \pi_\alpha(f(A))
\]

Therefore \(f \) is bicontinuous. \(\square \)

References

Received: July, 2009