On Residual Transcendental Extensions
of v to $K(x_1, \ldots, x_n)$

Figen Öke

Trakya University, Department of Mathematics, 22030 Edirne, Turkey
figenoke@gmail.com

Abstract

An r.t. extension of a valuation v on K to a rational function field with n variables is defined by using r.t. extensions of v to a rational function field with one variable and some properties of this valuation are investigated.

Mathematics Subject Classification: 12J10, 12F20, 12J20

Keywords: extensions of valuations, residual transcendental extensions

1 Introduction

Residual transcendental extensions of v to $K(x)$ are described by N. Popescu, V. Alexandru and A. Zaharescu in 1988, 1990. All valuations on $K(x)$ are classified by them in 1990. Certain residual transcendental and residual algebraic extensions of v to $K(x, y)$ are defined by F. Öke and H. İşcan in 2002. In this paper a residual transcendental extension of v to $K(x_1, \ldots, x_n)$ is defined using residual transcendental extensions of v to $K(x_i)$ for $i = 1, \ldots, n$. Certain properties of residual transcendental extensions of v to a rational function field with one variable are generalized for rational function field with n variables.

2 Preliminaries and Some Notations

Throughout this paper, v is a valuation of a field K with value group G_v, valuation ring O_v and residue field k_v, K is an algebraic closure of K, \overline{v} is the unique extension of v to \overline{K}, the value group of \overline{v} is the divisible closure
of G_v i.e. $\overline{G_v} = G_v = QG_v$ is the smallest divisible group which contains G_v and the residue field $\overline{k_v} = k_\overline{v}$ of \overline{v} is the algebraic closure of k_v. Let L be an extension of a field K. If v' is an extension of v to L then k_v will be identified canonically with a subfield of $k_{v'}$ and G_v with a subgroup of $G_{v'}$. Let K and M be subfields of a field L and u be a valuation of L. If the restriction of u to K is a valuation v and the restriction of u to L is valuation w then u is called common extension of v and w to L. $K(x)$ and $(x_1, ..., x_n)$ are rational function fields over K with one and n variables respectively. For any $b \in O_v$, b^* denotes the natural image of b in k_v. If $a_1, ..., a_n \in \overline{K}$, then the restriction of \overline{v} to $K(a_1, ..., a_n)$ will be denoted by $v_{a_1, ..., a_n}$.

w is called residual transcendental (r.t.) extension of v if k_w/k_v is a transcendental extension. For each $F = \sum_{i=1}^{n} a_i x^i \in K[x]$, w defined as $w(\sum_{i} a_i x^i) = \min(v(a_i))$ is a r. t. extension of v to $K(x)$. It is called as Gaussian extension of v. Its value group is $G_w = G_v$ and residue field is $k_w = k_v(x^*)$, where x^* trans / k_v.

An element (a, δ) of $\overline{K} \times G$ where G is an ordered abelian group which contains G_v is usually called a pair. A pair (a, δ) is called minimal with respect to K if for every $b \in \overline{K}$ such that $[K(b) : K] < [K(a) : K]$, one has $\overline{v}(a - b) < \delta$. If w is an r.t. extension of v to $K(x)$ then there exists a minimal pair $(a, \delta) \in \overline{K} \times G_v$ respect to K where a is separable over K and w is defined as follows: Let $f = \text{Irr}(a, K)$ be a minimal polynomial of a respect to K and $\gamma = w(f)$. If $F \in K[x]$, $F = F_0 + F_1 f + ... + F_n f^n$, $\deg F_i < \deg f$, $i = 0, ..., n$ then $w(F) = \inf(v_a(F_i(a)) + i\gamma)$. Let e be the smallest non-zero positive integer such that $e\gamma \in G_{v_a}$. Then $G_w = G_{v_a} + Z\gamma$, $[G_w : G_v] = e[G_{v_a} : G_v]$. Let $h \in K[x]$ such that $\deg h < \deg f$, $v_a(h(a)) = e\gamma$. Then $r = f^e/h$ is an element of O_w of the smallest order such that $r^* \in k_w$ is transcendental over k_v. Thus the field k_{v_a} can be identified canonically with the algebraic closure of k_v in k_w and $k_w = k_{v_a}(r^*)$. For any $r \in K(x)$, $r \notin K$, $\deg r$ is defined as $\deg r = [K(x) : K(r)]$. If w is a r.t. extension of v to $K(x)$ defined as above $\deg(w/v)$ is the least natural number such that there exists $r \in O_w$ of degree n and r^* is transcendental over k_v. The ramification index of G_w over G_v is denoted by $e(w/v) = [G_w : G_v]$ and the residue degree of w over v is $f(w/v) = [k_{v_a} : k_v]$ which is degree of algebraic closure of k_v in k_w.
3 Results

Let \(w_i \) be a r.t. extension of \(v \) to \(K(x_i) \) defined by a minimal pair \((a_i, \delta_i) \in \overline{K} \times G_\delta \) and \(f_i = \text{Irr}(a_i, K) \). \(\gamma_i = w_i(f_i) \), \(e_i \) be the smallest number such that \(e_i \gamma_i \in G_{\upsilon_1} \) where \(v_\upsilon \) is the restriction of \(\upsilon \) to \(K(a_i) \), \(h_i \in K[x_i] \) such that \(\deg h_i < \deg f_i \) and \(v_\upsilon(h(a_i)) = e_i \gamma_i \) for \(i = 1, ..., n \) and such that \(r_i^* \text{ trans}/k_\upsilon \).

Each polynomial \(F \in K[x_1, ..., x_n] \) can be written uniquely as:

\[
F = \sum_{i_1, ..., i_n} F_{i_1}^{i_1} ... F_{i_n}^{i_n}, \text{ deg}_x F_{i_1}^{i_1} ... F_{i_n}^{i_n} < \deg f_i, \ i = 1, ..., n.
\]

Define

\[
u(F) = \inf_{i_1, ..., i_n} (v_{a_1} ... a_n (F_{i_1}^{i_1} ... i_n (a_1, ..., a_n))) + i_1 \gamma_1 + ... + i_n \gamma_n \tag{1}\]

It is easily seen that \(\nu \) satisfies all valuation conditions on \(K[x_1, ..., x_n] \) and it can be uniquely extended to \(K(x_1, ..., x_n) \).

Proposition 2.1: Let \(u \) be a valuation which is defined in (1). \(u \) is a r.t. extension of \(v \) to \(K(x_1, ..., x_n) \).

1. If \(F(x_1, ..., x_n) \in K[x_1, ..., x_n] \) and \(\deg_x F(x_1, ..., x_n) < \deg f_i \) for \(i = 1, ..., n \) then \(u(F(x_1, ..., x_n)) = \bar{\nu}(F(a_1, ..., a_n)) \) and \(G_w = G_{v_{a_1} ..., a_n} + \mathbb{Z} \gamma_1 + ... + \mathbb{Z} \gamma_n \).

2. \(k_{v_{a_1} ..., a_n} \) is the algebraic closure of \(k_\upsilon \) in \(k_u \) and \(k_u = k_{v_{a_1} ..., a_n} (r_1^*, ..., r_n^*) \) where \(k_u = k_{v_{a_1} ..., a_n} (r_1^*, ..., r_n^*) \) for \(i = 1, ..., n \).

Proof: \(w_i \) which is the restriction of \(u \) to \(K(x_i) \) for \(i = 1, ..., n \) is a r.t. extension of \(u \) to \(K(x_i) \) defined by the minimal pair \((a_i, \delta_i) \in \overline{K} \times G_\delta \). \(u \) is the common extension of \(w_i \) to \(K(x_1, ..., x_n) \) for \(i = 1, ..., n \).

1. According to Theo 2.1 of [1] if \(g(x_i) \in K[x_1] \) and \(\deg g < \deg f_i \) then

\[
w_i(g(x_i)) = \bar{\nu}(g(a_i)).
\]

Therefore if \(\deg_x F(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n) < \deg f_i \) then \(u'_i(F(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., x_n)) = \bar{\nu}(F(a_1, ..., a_{i}, ..., a_n)) \) where \(u'_i \) is the restriction of \(u' \) which is the fixed extension of \(u \) to \(\overline{K}(x_1, ..., x_n) \) for

\(i = 1, ..., n \). Hence if \(\deg_x F(x_1, ..., x_n) < \deg f_i \) for \(i = 1, ..., n \) then

\[
u(x_1, ..., x_n) = \bar{\nu}(F(a_1, ..., a_n)) = v_{a_1} ..., a_n (F(a_1, ..., a_n)) \text{ and then}
\]

\[
G_w = G_{v_{a_1} ..., a_n} + \mathbb{Z} \gamma_1 + ... + \mathbb{Z} \gamma_n.
\]

2. Since \(e_i \gamma_i \in G_{v_{a_i}} \) there exists a polynomial \(h_i \in K[x_i] \), \(\deg h_i < \deg f_i \) such that \(w_i(h_i) = v_{a_i} (h(a_i)) \) and \(r_i^* \text{ trans}/k_{v_{a_i}} \) for \(i = 1, ..., n \). Let \(w_{a_i} \) be
the restriction of u' to $K(x_1, \ldots, x_{i-1}, a_i)$ and u_i is the common extension of w_1, \ldots, w_i to $K(x_1, \ldots, x_n)$ for $i = 1, \ldots, n$. u_1 is the r.t. extension of v to $K(x_1)$ defined by the minimal pair $(a_1, \delta_1) \in \overline{K} \times G_v$ and u_i is the r.t. extension of u_{i-1} defined by the minimal pair $(a_i, \delta_i) \in \overline{K} \times G_v$ for $i = 2, \ldots, n$. Since $k_{w_1} = k_{v_{u_1}}$, $r_1 \text{trans} / k_{v_{u_1}}$, $k_{u_1} = k_{v_{u_1}}(r_1)$ and $k_{w_i} = k_{w_{u_{i-1}}}, r_i \text{trans} / k_{v_{u_i}}$ for $i = 2, \ldots, n$ then it is obtained that to the algebraic closure of k_v in k_u is $k_{v_{u_1, \ldots, u_n}}$ and $k_u = k_{v_{u_1, \ldots, u_n}}(r_1^*, \ldots, r_n^*)$ by the induction.

Definition 2.2: Let u be an extension of v to $K(x_1, \ldots, x_n)$ defined in (1). Then degree of u/v is defined as;

$$D(u/v) = [K(x_1, \ldots, x_n) : K(r_1, \ldots, r_n)]$$

Moreover the ramification index of u/v is defined as; $E = E(u/v) = [G_u : G_v]$ and the residue degree of u/v is defined as, $F = F(u/v) = [k_{v_{u_1, \ldots, u_n}} : k_v]$ which is the degree of the algebraic closure of k_v in k_u over k_v.

Theorem 2.3: Let u be the r.t. extension of v to $K(x_1, \ldots, x_n)$ which is defined in (1) and $n_i = \deg f_i$ for $i = 1, \ldots, n$. Then

$$D(u/v) = \prod_{i=1}^{n} d(w_i/v)$$

Also the equality $D(u/v) = \prod_{i=1}^{n} e_i n_i$ holds.

Proof: Using the Theorem. 2.1. of [2] it can be seen that

$$d(u/v) = [K(x_1, \ldots, x_n) : K(r_1, \ldots, r_n)] = \prod_{i=1}^{n} \deg r_i = \prod_{i=1}^{n} d(w_i/v).$$

Since

$$d(w_i/v) = n_i f(w_i/v)$$

for $i = 1, \ldots, n$ the equality $D(u/v) = \prod_{i=1}^{n} e_i n_i$ holds.

Theorem 2.4: Let u be the r.t. extension of v to $K(x_1, \ldots, x_n)$ which is defined in (1). Then the inequality

$$D(u/v) \geq \prod_{i=1}^{n} e(w_i/v)f(w_i/v)$$

holds.

Proof: According to the Theo.2.2. and Corollary 2.2. of [2]

$$d(w_i/v) \geq e(w_i/v)f(w_i/v)$$

for $i = 1, \ldots, n$ then using the Theo. 2.3 the proof is completed.
Theorem 2.5: The equality $D(u/v) = \prod_{i=1}^{n} e(w_i/v)f(w_i/v)$ holds if one of the following conditions is satisfied.

i) $rank_v = 1$ and $chark_v = 0$

ii) $rank_v = 1$ and v is discrete

iii) v is Henselian and $chark_v = 0$.

Proof: According to Corollary 2.5 and Corollary 2.6. of [1] if one of this conditions is satisfied the equality $d(w_i/v) = e(w_i/v)f(w_i/v)$ holds for $i = 1, ..., n$. Therefore using the Theorem 2.3 the proof is obtained.

Corollary 2.6: Let E and F be the ramification index and the residue degree of u/v respectively. Then the inequality

$$D(u/v) \geq EF$$

holds.

Proof: Since the value group of u is $G_u = G_{v_{a_1},...,a_n} + \mathbb{Z}\gamma_1 + ... + \mathbb{Z}\gamma_n$

$$E = e(u/v) = \bar{e}[G_{v_{a_1},...,a_n} : G_v]$$

where \bar{e} is the smallest multiple of e_i for $i = 1, ..., n$. Therefore using the Theo. 2.3. it is obtained that

$$D(u/v) \geq \prod_{i=1}^{n} e(w_i/v)f(w_i/v) = \prod_{i=1}^{n} e_i[G_{v_{a_i}} : G_v] [k_{v_{a_i}} : k_v] \geq EF.$$

References

[5] F. Öke, H. İşcan, An introduction to extension of valuations on K to $K(x,y)$,

Received: December, 2008