A Note on σ-Reversibility and σ-Symmetry of Skew Power Series Rings

L'moufadal Ben Yakoub and Mohamed Louzari

Department of Mathematics, Abdelmalek Essaadi University
B.P. 2121 Tetouan, Morocco
benyakoub@hotmail.com, mlouzari@yahoo.com

Abstract

Let R be a ring and σ an endomorphism of R. In this note, we study the transfer of the symmetry (σ-symmetry) and reversibility (σ-reversibility) from R to its skew power series ring $R[[x;\sigma]]$. Moreover, we study on the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring R and these of the skew power series ring $R[[x;\sigma]]$ in case R is right σ-reversible. As a consequence we obtain a generalization of [10].

Mathematics Subject Classification: 16S36; 16W20; 16U80

Keywords: Armendariz rings; Baer rings; p.p.-rings; quasi-Baer rings; skew power series rings; reversible rings; symmetric rings

1 Introduction

Throughout this paper R denotes an associative ring with identity and σ denotes a nonzero non identity endomorphism of a given ring.

Recall that a ring is reduced if it has no nonzero nilpotent elements. Lambek [16], called a ring R symmetric if $abc = 0$ implies $acb = 0$ for $a, b, c \in R$. Every reduced ring is symmetric ([19, Lemma 1.1]) but the converse does not hold by [1, Example II.5]. Cohen [8], called a ring R reversible if $ab = 0$ implies $ba = 0$ for $a, b \in R$. It is obvious that commutative rings are symmetric and symmetric rings are reversible, but the converse does not hold by [1, Examples I.5 and II.5] and [17, Examples 5 and 7]. From [3], a ring R is called right (left) σ-reversible if whenever $ab = 0$ for $a, b \in R$, $b\sigma(a) = 0$ ($\sigma(b)a = 0$). R is called σ-reversible if it is both right and left σ-reversible. Also, by [15], a ring R is called right (left) σ-symmetric if whenever $abc = 0$ for $a, b, c \in R$, $a\sigma(c)b = 0$
(σ(b)ac = 0). R is called σ-symmetric if it is both right and left σ-symmetric. Clearly right σ-symmetric rings are right σ-reversible.

Rege and Chhawchharia [18], called a ring R an Armendariz if whenever polynomials \(f = \sum_{i=0}^{n} a_i x^i, \ g = \sum_{j=0}^{m} b_j x^j \in R[x] \) satisfy \(fg = 0 \), then \(a_i b_j = 0 \) for each \(i, j \). The Armendariz property of a ring was extended to one of skew polynomial ring in [11]. For an endomorphism \(\sigma \) of a ring \(R \), a skew polynomial ring (also called an Ore extension of endomorphism type) \(R[x; \sigma] \) of \(R \) is the ring obtained by giving the polynomial ring over \(R \) with the new multiplication \(xr = \sigma(x)r \) for all \(r \in R \). Also, a skew power series ring \(R[[x; \sigma]] \) is the ring consisting of all power series of the form \(\sum_{i=0}^{\infty} a_i x^i \) \((a_i \in R) \), which are multiplied using the distributive law and the Ore commutation rule \(xa = \sigma(a)x \) for all \(a \in R \). According to Hong et al. [11], a ring \(R \) is called σ-skew Armendariz if whenever polynomials \(f = \sum_{i=0}^{n} a_i x^i \) and \(g = \sum_{j=0}^{m} b_j x^j \in R[x; \sigma] \) satisfy \(fg = 0 \) then \(a_i \sigma^j(b_j) = 0 \) for each \(i, j \). Baser et al. [4], introduced the concept of \(\sigma \)-(sps) Armendariz rings. A ring \(R \) is called \(\sigma \)-(sps) Armendariz if whenever \(pq = 0 \) for \(p = \sum_{i=0}^{\infty} a_i x^i, \ q = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \sigma]] \), then \(a_i b_j = 0 \) for all \(i \) and \(j \). According to Krempa [14], an endomorphism \(\sigma \) of a ring \(R \) is called rigid if \(a \sigma(a) = 0 \) implies \(a = 0 \) for all \(a \in R \). We call a ring \(R \) \(\sigma \)-rigid if there exists a rigid endomorphism \(\sigma \) of \(R \). Note that any rigid endomorphism of a ring \(R \) is a monomorphism and \(\sigma \)-rigid rings are reduced by Hong et al. [10]. Also, by [15, Theorem 2.8(1)], a ring \(R \) is \(\sigma \)-rigid if and only if \(R \) is semiprime right \(\sigma \)-symmetric and \(\sigma \) is a monomorphism, so right \(\sigma \)-symmetric (\(\sigma \)-reversible) rings are a generalization of \(\sigma \)-rigid rings.

In this note, we introduce the notion of \(\sigma \)-skew (sps) Armendariz rings which is a generalization of \(\sigma \)-(sps) Armendariz rings, and we study the transfert of the symmetry (\(\sigma \)-symmetry) and reversibility (\(\sigma \)-reversibility) from \(R \) to its skew power series ring \(R[[x; \sigma]] \). Also we show that \(R \) is \(\sigma \)-(sps) Armendariz if and only if \(R \) is \(\sigma \)-skew (sps) Armendariz and \(ab = 0 \) implies \(ab = 0 \) for \(a, b \in R \). Moreover, we study on the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring \(R \) and these of the skew power series ring \(R[[x; \sigma]] \) in case \(R \) is right \(\sigma \)-reversible. As a consequence we obtain a generalization of [10].

2 \(\sigma \)-Reversibility and \(\sigma \)-Symmetry of Skew Power Series Rings

We introduce the next definition.

Definition 2.1. Let \(R \) be a ring and \(\sigma \) an endomorphism of \(R \). A ring \(R \) is called \(\sigma \)-skew (sps) Armendariz if whenever \(pq = 0 \) for \(p = \sum_{i=0}^{\infty} a_i x^i, \ q = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \sigma]] \), then \(a_i \sigma^j(b_j) = 0 \) for all \(i \) and \(j \).
Every subring S with $\sigma(S) \subseteq S$ of an σ-skew (sps) Armendariz ring is a σ-skew (sps) Armendariz ring. In the next, we give an example of a ring R which is σ-skew (sps) Armendariz but not σ-(sps) Armendariz.

Example 2.2. Let R be the polynomial ring $\mathbb{Z}_2[x]$ over \mathbb{Z}_2, and let the endomorphism $\sigma: R \rightarrow R$ be defined by $\sigma(f(x)) = f(0)$ for $f(x) \in \mathbb{Z}_2[x]$.

(i) R is not σ-(sps) Armendariz because σ is not a monomorphism.

(ii) R is an σ-skew (sps) Armendariz ring (as in [11, Example 5]). Consider $R[[y;\sigma]] = \mathbb{Z}_2[x][[y;\sigma]]$. Let $p = \sum_{i=0}^{\infty} f_i y^i$ and $q = \sum_{j=0}^{\infty} g_j y^j \in R[[y;\sigma]]$. We have $pq = \sum_{\ell \geq 0} \sum_{i+j=\ell} f_i \sigma^i(g_j)y^\ell = 0$. If $pq = 0$ then $\sum_{\ell=0}^{\infty} f_i \sigma^i(g_j)y^\ell = 0$, for each $\ell \geq 0$. Suppose that there is $f_s \neq 0$ for some $s \geq 0$ and $f_0 = f_1 = \cdots = f_{s-1} = 0$, then $\sum_{i+j=s} f_i \sigma^i(g_j)y^{i+j} = 0 \Rightarrow f_s \sigma^s(g_0) = 0$, since R is a domain then $g_0(0) = 0$. Also $\sum_{i+j=s+1} f_i \sigma^i(g_j)y^{i+j} = 0 \Rightarrow f_s \sigma^s(g_1) + f_{s+1} \sigma^{s+1}(g_0) = 0$, since $g_0(0) = 0$ then $f_s \sigma^s(g_1) = 0$ and so $g_1(0) = 0$ by the same method as above. Continuing this process, we have $g_j(0) = 0$ for all $j \geq 0$. Thus $f_i \sigma^i(g_j) = 0$ for all i,j.

We say that R satisfies the condition (C_σ), if whenever $a\sigma(b) = 0$ for $a, b \in R$, then $ab = 0$. By [4, Theorem 3.3(3iii)], if R is σ-(sps) Armendariz then it satisfies (C_σ) (so σ is a monomorphism). If R is an σ-skew (sps) Armendariz ring satisfying the condition (C_σ) then R is σ-(sps) Armendariz.

Theorem 2.3. A ring R is σ-(sps) Armendariz ring if and only if it is σ-skew (sps) Armendariz and satisfies the condition (C_σ).

Proof. (\Leftarrow). It is clear. (\Rightarrow). If R is σ-(sps) Armendariz then it satisfies the condition (C_σ). It suffices to show that if R is σ-(sps) Armendariz then it is σ-skew (sps) Armendariz. The proof is similar as of [12, Theorem 1.8].

Let $p = \sum_{i=0}^{\infty} a_i x^i$ and $q = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\sigma]]$ with $pq = 0$. Note that $a_i b_j = 0$ for all i and j. We claim that $a_i \sigma^i(b_j) = 0$ for all i and j. We have $(a_0 + a_1 x + \cdots)(b_0 + b_1 x + \cdots) = 0$, then $a_0(b_0 + b_1 x + \cdots) + (a_1 x + a_2 x^2 + \cdots)(b_0 + b_1 x + \cdots) = 0$. Since $a_0 b_j = 0$ for all j, we get

$$0 = (a_1 x + a_2 x^2 + \cdots)(b_0 + b_1 x + \cdots)$$
$$0 = (a_1 + a_2 x + \cdots)x(b_0 + b_1 x + \cdots)$$
$$0 = (a_1 + a_2 x + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots).$$

Put $p_1 = a_1 + a_2 x + \cdots$ and $q_1 = \sigma(b_0)x + \sigma(b_1)x^2 + \cdots$. Since $p_1 q_1 = 0$ then $a_i \sigma(b_j) = 0$ for all $i \geq 1$ and $j \geq 0$. We have, also

$$0 = a_1(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots) + (a_2 x + a_3 x^2 + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots).$$

Since $a_1 \sigma(b_j) = 0$ for all j, then

$$0 = (a_2 x + a_3 x^2 + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots)$$
Let a, i, j, k be an σ-(sps) Armendariz ring. Then for $f = \sum_{i=0}^{\infty} a_i x^i$, $g = \sum_{j=0}^{\infty} b_j x^j$ and $h = \sum_{k=0}^{\infty} c_k x^k \in R[[x; \sigma]]$, if $fgh = 0$ then $a_i b_j c_k = 0$ for all i, j, k.

Proof. Note that, if $fg = 0$ then $a_i g = 0$ for all i. Suppose that $fgh = 0$ then $a_i (gh) = 0$ for all i, and so $(a_i g) h = 0$ for all i. Therefore $a_i b_j c_k = 0$ for all i, j, k.

Proposition 2.5. Let R be an σ-(sps) Armendariz ring. Then

1. R is reversible if and only if $R[[x; \sigma]]$ is reversible.
2. R is symmetric if and only if $R[[x; \sigma]]$ is symmetric.

Proof. If $R[[x; \sigma]]$ is symmetric (reversible) then R is symmetric (reversible). Conversely, (1). Let $f = \sum_{i=0}^{\infty} a_i x^i$ and $g = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \sigma]]$, if $fg = 0$ then $a_i b_j = 0$ for all i and j. By [4, Theorem 3.3 (3ii)], we have $\sigma^j(a_i)b_j = 0$ for all i and j. Since R is reversible, we obtain $b_j \sigma^j(a_i) = 0$ for all i and j. Thus $gf = \sum_{i=0}^{\infty} \sum_{j=i}^{\infty} b_j \sigma^j(a_i)x^i = 0$. (2). We will use freely [4, Theorem 3.3 (3ii)], reversibility and symmetry of R. Let $f = \sum_{i=0}^{\infty} a_i x^i$, $g = \sum_{j=0}^{\infty} b_j x^j$ and $h = \sum_{k=0}^{\infty} c_k x^k \in R[[x; \sigma]]$, if $fgh = 0$ then $a_i b_j c_k = 0$ for all i, j and k, by Lemma 2.4. Then for all i, j, k we have $b_j c_k a_i = 0 \Rightarrow \sigma^k(b_j)c_k a_i = 0 \Rightarrow a_i \sigma^k(b_j)c_k = 0 \Rightarrow a_i c_k \sigma^k(b_j) = 0 \Rightarrow c_k \sigma^k(b_j)a_i = 0 \Rightarrow a_i \sigma^i[\sigma^k(b_j)] a_i = 0 \Rightarrow a_i \sigma^i[c_k \sigma^k(b_j)] = 0$. Thus $fgh = 0$.

The next Lemma gives a relationship between σ-reversibility (σ-symmetry) and reversibility (symmetry).

Lemma 2.6 ([5, Lemma 3.1]). Let R be a ring and σ an endomorphism of R. If R satisfies the condition (C$_\sigma$). Then

1. R is reversible if and only if R is σ-reversible;
2. R is symmetric if and only if R is σ-symmetric.

Theorem 2.7. Let R be an σ-(sps) Armendariz ring. The following statements are equivalent:

1. R is reversible (symmetric);
2. R is σ-reversible (σ-symmetric);
3. R is right σ-reversible (right σ-symmetric);
4. $R[[x; \sigma]]$ is reversible (symmetric).
Proof. We prove the reversible case (the same for the symmetric case).

(1) \iff (4). By Proposition 2.5.

(1) \Rightarrow (2) and (2) \Rightarrow (3). Immediately from Lemma 2.6.

(3) \Rightarrow (1). Let $a,b \in R$, if $ab = 0$ then $b\sigma(a) = 0$ (right σ-reversibility), so $ba = 0$ (condition (C_σ)).

\[\]

3 Related Topics

In this section we turn our attention to the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring R and these of the skew power series ring $R[[x;\sigma]]$ in case R is right σ-reversible. For a nonempty subset X of R, we write $r_R(X) = \{c \in R|dc = 0 \text{ for any } d \in X\}$ which is called the right annihilator of X in R.

Lemma 3.1. If R is a right σ-reversible ring with $\sigma(1) = 1$. Then

1. $\sigma(e) = e$ for all idempotent $e \in R$;
2. R is abelian.

Proof. (1) Let e an idempotent of R. We have $e(1-e) = (1-e)e = 0$ then $(1-e)\sigma(e) = e\sigma((1-e)) = 0$, so $\sigma(e) - e\sigma(e) = e - e\sigma(e) = 0$, therefore $\sigma(e) = e$. (2) Let $r \in R$ and e an idempotent of R. We have $e(1-e) = 0$ then $e(1-e)r = 0$, since R is right σ-reversible then $(1-e)r\sigma(e) = 0 = (1-e)re = 0$, so $re = ere$. Since $(1-e)e = 0$, we have also $er = ere$. Then R is abelian. \[\]

Lemma 3.2. Let R be a right σ-reversible ring with $\sigma(1) = 1$, then the set of all idempotents in $R[[x;\sigma]]$ coincides with the set of all idempotents of R. In this case $R[[x;\sigma]]$ is abelian.

Proof. We adapt the proof of [3, Theorem 2.13(iii)] for $R[[x;\sigma]]$. Let $f^2 = f \in R[[x;\sigma]]$, where $f = f_0 + f_1x + f_2x^2 + \cdots$. Then

\[\sum_{\ell=0}^{\infty} \sum_{i+j=\ell} f_i \sigma^i(f_j)x^\ell = \sum_{\ell=0}^{\infty} f_\ell x^\ell. \]

For $\ell = 0$, we have $f_0^2 = f_0$. For $\ell = 1$, we have $f_0f_1 + f_1\sigma(f_0) = f_1$, but f_0 is central and $\sigma(f_0) = f_0$, so $f_0f_1 + f_1f_0 = f_1$, a multiplication by $(1-f_0)$ on the left hand gives $f_1 = f_0f_1$, and so $f_1 = 0$. For $\ell = 2$, we have $f_0f_2 + f_1\sigma(f_1) + f_2\sigma^2(f_0) = f_2$, so $f_0f_2 + f_2f_0 = f_2$ (because $f_1 = 0$ and $\sigma^2(f_0) = f_0$), a multiplication by $(1-f_0)$ on the left hand gives $f_0f_2 = f_2 = 0$. Continuing this procedure yields $f_i = 0$ for all $i \geq 1$. Consequently, $f = f_0 = f_0^2 \in R$. Since R is abelian then $R[[x;\sigma]]$ is abelian. \[\]
Kaplansky [13], introduced the concept of \textit{Baer rings} as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [7], a ring \(R \) is called \textit{quasi-Baer} if the right annihilator of each right ideal of \(R \) is generated (as a right ideal) by an idempotent. It is well-known that these two concepts are left-right symmetric. A ring \(R \) is called a \textit{right (left) p.p.-ring} if the right (left) annihilator of an element of \(R \) is generated by an idempotent. \(R \) is called a \textit{p.p.-ring} if it is both a right and left p.p.-ring.

Theorem 3.3. Let \(R \) be a right \(\sigma \)-reversible ring with \(\sigma(1) = 1 \). Then

1. \(R \) is a Baer ring if and only if \(R[[x; \sigma]] \) is a Baer ring;
2. \(R \) is a quasi-Baer ring if and only if \(R[[x; \sigma]] \) is a quasi-Baer ring.

Proof. (\(\Rightarrow \)). Suppose that \(R \) is Baer. Let \(A \) be a nonempty subset of \(R[[x; \sigma]] \) and \(A^\ast \) be the set of all coefficients of elements of \(A \). Then \(A^\ast \) is a nonempty subset of \(R \) and so \(r_R(A^\ast) = eR \) for some idempotent element \(e \in R \). Since \(e \in r_R([x; \sigma])A \) by Lemma 3.1. We have \(eR[[x; \sigma]] \subseteq r_R([x; \sigma])A \). Now, let \(0 \neq q = b_0 + b_1x + b_2x^2 + \cdots \in r_R([x; \sigma])A \). Then \(Aq = 0 \) and hence \(pq = 0 \) for any \(p \in A \). Let \(p = a_0 + a_1x + a_2x^2 + \cdots, \) then

\[
pq = \sum_{\ell \geq 0} \sum_{i+j=\ell} a_i \sigma^i(b_j)x^\ell = 0.
\]

- \(\ell = 0 \) implies \(a_0b_0 = 0 \) then \(b_0 \in r_R(A^\ast) = eR \).
- \(\ell = 1 \) implies \(a_0b_1 + a_1 \sigma(b_0) = 0 \), since \(b_0 = eb_0 \) and \(\sigma(e) = e \) then \(a_0b_1 + a_1 \sigma(b_0) = 0 \), but \(a_1 = 0 \) so \(a_0b_1 = 0 \) and hence \(b_1 \in r_R(A^\ast) \).
- \(\ell = 2 \) implies \(a_0b_2 + a_1 \sigma(b_1) + a_2 \sigma^2(b_0) = 0 \), then \(a_0b_2 + a_1 \sigma(b_1) + a_2 \sigma^2(b_0) = 0 \), but \(a_1 \sigma(b_1) = a_2 \sigma^2(b_0) = 0 \), hence \(a_0b_2 = 0 \). Then \(b_2 \in r_R(A^\ast) \).

Continuing this procedure yields \(b_0, b_1, b_2, b_3, \cdots \in r_R(A^\ast) \). So, we can write \(q = eb_0 + eb_1x + eb_2x^2 + \cdots \in eR[[x; \sigma]] \). Therefore \(eR[[x; \sigma]] = r_R([x; \sigma])A \).

Consequently, \(R[[x; \sigma]] \) is a Baer ring.

Conversely, Suppose that \(R[[x; \sigma]] \) is Baer. Let \(B \) be a nonempty subset of \(R \). Then \(r_R([x; \sigma])(B) = eR[[x; \sigma]] \) for some idempotent \(e \in R \) by Lemma 3.2. Thus \(r_R(B) = r_R([x; \sigma])(B) \cap R = eR[[x; \sigma]] \cap R = eR \). Therefore \(R \) is Baer.

The proof for the case of the quasi-Baer property follows in a similar fashion; In fact, for any right ideal \(A \) of \(R[[x; \sigma]] \), take \(A^\ast \) as the right ideal generated by all coefficients of elements of \(A \).

From [10, Example 20], \(R = M_2(\mathbb{Z}) \) is a Baer ring and \(R[[x]] \) is not Baer. Clearly \(R \) is not reversible. So that, the “right \(\sigma \)-reversibility” condition in Theorem 3.3(1) is not superfluous.
According to Annin [2], a ring R is σ-compatible if for each $a, b \in R$, $a\sigma(b) = 0$ if and only if $ab = 0$. Hashemi and Moussavi [9, Corollary 2.14] have proved Theorem 3.3(2), when R is σ-compatible. Consider R and σ as in Example 2.2. Since R is a domain then it is right σ-reversible (with $\sigma(1) = 1$). Also R is not σ-compatible (so R does not satisfy the condition (C_σ)), because σ is not a monomorphism. Therefore Theorem 3.3(2) is not a consequence of [9, Corollary 2.14]. On other hand, if R is reversible then σ-compatibility implies right σ-reversibility. But, if R is not reversible, we can easily see that this implication does not hold.

Theorem 3.4. Let R be a right σ-reversible ring with $\sigma(1) = 1$. If $R[[x; \sigma]]$ is a p.p.-ring then R is a p.p.-ring.

Proof. Suppose that $R[[x; \sigma]]$ is a right p.p.-ring. Let $a \in R$, then there exists an idempotent $e \in R$ such that $r_{R[[x; \sigma]]}(a) = eR[[x; \sigma]]$ by Lemma 3.2. Hence $r_R(a) = eR$, and therefore R is a right p.p.-ring.

Also, in Example 2.2, R is not σ-(sps) Armendariz. So Theorem 3.3 and Theorem 3.4 are not consequences of [4, Theorem 3.2].

Since σ-rigid rings are right σ-reversible [15, Theorem 2.8 (1)], we have the following Corollaries.

Corollary 3.5 ([10, Theorem 21]). Let R be an σ-rigid ring. Then R is a Baer ring if and only if $R[[x; \sigma]]$ is a Baer ring.

Corollary 3.6 ([10, Corollary 22]). Let R be an σ-rigid ring. Then R is a quasi-Baer ring if and only if $R[[x; \sigma]]$ is a quasi-Baer ring.

ACKNOWLEDGEMENTS. The second author wishes to thank Professor Amin Kaidi of University of Almería for his generous hospitality. This work was supported by the project PCI Moroccan-Spanish A/011421/07.

References

Received: November, 2008