On the Maximal Ideals in L^1-Algebra of the Heisenberg Group

Kahar El-Hussein

Department of Mathematics, Al-Jouf University
Faculty of Science, Kingdom of Saudi Arabia
khali_kh@yahoo.com

Abstract

It is known that the theory of ideals in L^1-algebra of a locally compact group played an important role especially in spectral theory. We know the theory is uneasy, except of locally compact abelian groups which was developed by many mathematicians [1], [9], [10], [12] and [13]. The main idea of this paper is the embedding of the $2n+1$-dimensional Heisenberg group and the $2n + 1$-dimensional vector group, into the $3n+1$-dimensional group. Analysis over the vector groups is easier, this should lead us to obtain the maximal ideals(left) in L^1-algebra of Heisenberg group.

Mathematics Subject Classification: 43A30

Keywords: Heisenberg group, Semi-direct product, Ideals in L^1-algebra of the Heisenberg group

1 Preliminary and Results

1.1. Let H^n be the Heisenberg group of dimension $2n + 1$, which consists of the form

$$\begin{pmatrix}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{pmatrix} \quad (1.1)$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, $z \in \mathbb{R}$ and I is the identity matrix of order n.

Let $G = \mathbb{R}^{n+1} \rtimes_{\rho} \mathbb{R}^n$ be the group of the semi-direct product of the group \mathbb{R}^{n+1} and \mathbb{R}^n, via the group homomorphism $\rho : \mathbb{R}^n \to Aut(\mathbb{R}^{n+1})$, which is defined by:

$$\rho(x)(z, y) = (z + xy, y) \quad (1.2)$$
for any \(x = (x_1, \ldots, x_n) \in \mathcal{R}^n, y = (y_1, \ldots, y_n) \in \mathcal{R}^n, z \in \mathbb{R} \) and \(xy = \sum_{i=1}^{n} x_i y_i \), where \(\text{Aut}(\mathcal{R}^{n+1}) \) is the group of all automorphisms of \(\mathcal{R}^{n+1} \). The multiplication of two elements \(x = ((z, y); x) \) and \(y = ((z', y'); x') \) in \(G \) is given by:

\[
X \cdot Y = ((z, y); x)((z', y'); x') \\
= ((z, y) + x(z', y'), x + x') \\
= ((z + z' + xy', y + y'); x + x')
\]

(1.3)

where \(x(z', y') = \rho(x)(z', y') \).

The inverse of an element \(X \) in \(G \) is:

\[
X^{-1} = ((z, y); x)^{-1} \\
= (-x(-z, -y); -x) \\
= ((-z + x y, -y); -x)
\]

(1.4)

In view of the group isomorphism \(\Psi : G \rightarrow H^n \) defined by

\[
\Psi((z, y); x) = \begin{pmatrix}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{pmatrix}
\]

We can identify the group \(H^n \) with the group \(G \).

1.2. If \(M \) is an unimodular Lie group, we denote by \(L^1(M) \) the Banach algebra that consists of all complex valued functions on the group \(M \), which are integrable with respect to the Haar measure of \(M \) and multiplication is defined by convolution on \(M \). If \(N \) is a subgroup of \(M \) we will denote by \(L^1(M)|_N \) the restriction of \(L^1(M) \) on the subgroup \(N \). That means:

\[
L^1(M)|_N = \{ F|_N; F \in L^1(M) \}
\]

where \(F|_N \) signifies the restriction of the function \(F \) on \(N \).

2 Invariant functions.

2.1. Let \(B = \mathcal{R}^{n+1} \times \mathcal{R}^n \) be the real vector group which is the direct product of \(\mathcal{R}^{n+1} \) and \(\mathcal{R}^n \). Let \(K = \mathcal{R} \times \mathcal{R}^n \times \mathcal{R}^n \times \mathcal{R}^n \) be the \(3n+1 \)– dimensional group with law

\[
X \cdot Y = ((z, y); x, t)((z', y'); x', t') \\
= ((z, y) + t(z', y'); x + x', t + t') \\
= ((z + z' + ty', y + y'); x + x', t + t')
\]

(2.1)
for all $x = ((z, y); x, t)$ and $y = ((z', y); x', t')$ where $x(z', y') = \rho(x)(z', y')$.

The inverse of an element $x = ((z, y); x, t)$ in L is given by:

$$X^{-1} = ((z, y); x, t)^{-1} = (-x (-z, -y); -x, -t) = ((-z + ty, -y); -x, -t)$$

(2.2)

In this case we can identify the group G with the closed subgroup $\mathcal{R}^{n+1} \times \{0\} \rtimes \mathcal{R}^n$ of K and B with the closed subgroup $\mathcal{R}^{n+1} \times \mathcal{R}^n \rtimes \{0\}$ of K.

Definition 2.2. For every $f \in L^1(K)$, one can define a function \tilde{f} as follows:

$$\tilde{f}((z, y); x, t) = f((x(z)); 0, t + x)$$

(2.3)

for all $((z, y); x, t) \in K$.

Remark 2.3. The function \tilde{f} is invariant in the following sense

$$\tilde{f}(k(z, y); x - k, t + k) = \tilde{f}((z, y); x, t)$$

(2.4)

for all $((z, y); x, t) \in K$ and $k \in \mathcal{R}^n$.

Note that the restriction function $\tilde{f}|_G$ belongs to $L^1(G)$ and $\tilde{f}|_B$ belongs to $L^1(B)$. Let $L_1^1(K) \rightleftarrows (L^1(K))$ be the image of $L^1(K)$ by the mapping \sim, then the space $L^1(G) = L^1(B)$ can be identified with the space $L_1^1(K)$.

Definition 2.4. For every $u \in L^1(G)$ or $u \in L^1(B)$ one can define two convolutions product on the group L by:

(i) $u \ast F((z, y); x, t) = \int_G F[((a, b); c)^{-1}((z, y); x, t)] u((a, b); c) da db dc$

(ii) $u \ast_c F((z, y); x, t) = \int_B F[((z - a, y - b); x - c, t)] u((a, b); c) da db dc$

(2.5)

(2.6)

for any $F \in L^1(K)$, where $da db dc$ is the Lebesgue measure on G, \ast is the convolution product on G and \ast_c is the convolution product on B.

Corollary 2.5 (i) For each $u \in L^1(G)$ and $F \in L_1^1(K)$ we have:

$$u \ast F((z, y); x, t) = u \ast_c F((z, y); x, t)$$

(2.7)
for all \(((z,y);x,t)\in K\).

\(\text{(ii) The mapping } \lambda \text{ from } L^1(B) \text{ to } L^1(G) \text{ defined by } \lambda(\tilde{f}|_B)((z,y),0,x) = \tilde{f}|_G(x(z,y),0,x)\)

\[\lambda(\tilde{f}|_B)((z,y),0,x) = \tilde{f}|_G(x(z,y),0,x) \tag{2.8}\]

is a topological isomorphism

\(\text{(iii) The mapping } \tau : L^1(G) \longrightarrow L^1(G) \text{ defined by }\)

\[\tau(\tilde{f}|_G)((z,y),0,x) = (\tilde{f}|_G)((x(z,y),0,x) \tag{2.9}\]

is a topological isomorphism

Proof. (i) results immediately from (2.4), (2.5) and (2.6).

(ii) It is clear that the mapping \(\lambda\) is continuous and its inverse \(\lambda^{-1}\) defined by

\[\lambda^{-1}(\tilde{f}|_G)((z,y),x,0) = \tilde{f}|_B((x(z,y)),x,0) \tag{2.10}\]

is also continuous

(iii) \(\tau\) is continuous and its inverse is

\[\tau^{-1}(\tilde{f}|_G)((z,y),0,x) = (\tilde{f}|_G)((x(z,y),0,x) \tag{2.11}\]

is also continuous

3 Ideals in Group algebra of Heisenberg Group.

3.1. If \(\Gamma\) is a subspace of \(L^1(K)\), we denote by \(\tilde{\Gamma}\) its image by the mapping \(\sim\).

Let \(J = \tilde{\Gamma}|_G\) and \(I = \tilde{\Gamma}|_B\).

Our main result is:

Theorem 3.2. Let \(\Gamma\) be a subspace of \(L^1(K)\), then the following conditions are equivalents:

\(\text{(i) } I = \tilde{\Gamma}|_B\) is an ideal in the algebra \(L^1(B)\).

\(\text{(ii) } J = \tilde{\Gamma}|_G\) is a left ideal in the algebra \(L^1(G)\).

Proof: Let \(\Gamma\) be a subspace of the space \(L^1(K)\) such that \(I = \tilde{\Gamma}|_B\) is an ideal in \(L^1(B)\), then we have:

\[u*e_I ((z,y),x,0) \subseteq I ((z,y),x,0) \tag{3.1}\]

for any \(u \in L^1(B)\), where

\[u*e_I ((z,y),x,0) = \{u*e_f ((z,y),x,0), \ f \in I\}\]

\[= \{u*e(F|_B)((z,y),x,0), F \in \Gamma\} \tag{3.2}\]
Maximal ideals in L^1-algebra of the Heisenberg group

Since
\[I((z, y), x, 0) = I(x(z, y), 0, x) = \tau(J)((z, y), 0, x) \] (3.3)
then we get
\[u \ast_c I((z, y), x, 0) = u \ast_c I(x(z, y), 0, x) = \tau(u \ast J)((z, y), 0, x) \] (3.4)
and
\[\tau(u \ast J)((z, y), 0, x) \subseteq I(x(z, y), 0, x) = \tau(J)((z, y), 0, x) \] (3.5)
where
\[u \ast J((z, y), 0, x) = \{ u \ast f((z, y), 0, x), f \in J \} \]
\[= \{ u \ast (F|G)((z, y), 0, x), F \in \Gamma \} \] 3.6

Now the inverse of τ gives
\[u \ast J \subseteq J \] (3.7)
this proves (i) implies (ii) and (ii) implies (i), whence the theorem.

Corollary 3.3. Let Γ be a subspace of the space $L^1(K)$ such that $I = \tilde{\Gamma}|_B$ is an ideal in $L^1(B)$, then the following conditions are verified
- (i) $I = \tilde{\Gamma}|_B$ is a maximal ideal in the algebra $L^1(B)$ if and only if $J = \tilde{\Gamma}|_G$ is a left maximal ideal in the algebra $L^1(G)$.
- (ii) $I = \tilde{\Gamma}|_B$ is a closed ideal in the algebra $L^1(B)$ if and only if $J = \tilde{\Gamma}|_G$ is a left closed ideal in the algebra $L^1(G)$.
- (iii) $I = \tilde{\Gamma}|_B$ is a dense ideal in the algebra $L^1(B)$ if and only if $J = \tilde{\Gamma}|_G$ is a left dense ideal in the algebra $L^1(G)$. The proof of this corollary results immediately from theorem 3.2

Remark 3.4. If we consider the classical Fourier transform $T_F = e^{-i(\langle \xi, v \rangle, (X, t))}$ on the vector group K, then we get
\[T_F (f \ast \hat{g})(\xi, v) = \mathcal{F}(f)(\xi) T_F(\hat{g})(\xi, v) \] (3.8)
for any $f \in L^1(G)$ and $g \in L^1(G)$, where $\xi = ((\eta, \lambda); \mu)$,
\[\langle \xi, X \rangle = \eta z + \sum_{i=1}^{n} \lambda_i Y_i + \sum_{i=1}^{n} \mu_i x_i \text{ and } \] (3.9)
\[\langle v, t \rangle = \sum_{i=1}^{n} v_i t_i. \]

Now the question is.
Can we define a new structure of algebra on $L^1(G)$ suitable for T_F?
References

Received: November, 2008