Semi-Endosimple Modules
and Some Applications

M. Baziar, A. Haghany and M. R. Vedadi

Department of Mathematical Sciences
Isfahan University of Technology, Isfahan, 84156-83111, Iran
baziar@math.iut.ac.ir, aghagh@cc.iut.ac.ir, mrvedadi@cc.iut.ac.ir

Abstract

An \(R \)-module is called semi-endosimple if it has no proper fully invariant essential submodules. For a quasi-projective retractable module \(M_R \) we show that \(M \) is finitely generated semi-endosimple if and only if the endomorphism ring of \(M \) is a finite direct sum of simple rings. For an arbitrary module \(M \), conditions equivalent to the semi-endosimplicity of its quasi-injective hull are found. As consequences of these results, new characterizations of V-rings, right Noetherian V-rings and strongly semiprime rings are obtained. As such, a hereditary left Noetherian ring \(R \) is a finite direct sum of simple Noetherian right V-rings if and only if all finitely generated right \(R \)-modules are semi-endosimple.

Mathematics Subject Classification: 16D10, 16D40, 16D90

Keywords: Fully invariant essential, cocyclic, semi-endosimple, strongly semiprime

1. Introduction

Throughout rings will have unit elements and modules will be right unitary. If \(M \) is a module over a ring \(R \), its quasi-injective (injective) hull will be denoted by \(\hat{M}_R \) (\(E(M_R) \)). Unexplained terminology and standard results may be found in [2] or [6]. As a simultaneous generalization of weakly primitive rings in the sense of Zelmanowitz [7] and strongly prime rings, Desale and Nicholson [2] defined an endoprimitive ring \(R \) for which one of several equivalent definitions is the existence of a faithful endosimple module, where a non-zero module is called endosimple if it has no non-trivial fully invariant submodules. With this terminology, an endosimple module \(M_R \) is strongly prime, that is, \(M \) is contained in every non-zero fully invariant submodule of \(E(M_R) \), or equivalently \(\hat{M}_R \) is endosimple; see [2, Proposition 1.2]. A strongly semiprime module \(M_R \)
was defined by Beidar and Wisbauer [1] by requiring that $H\hat{M}_R$ be semisimple (as a bimodule) where $H = \text{End}_R(\hat{M})$. They characterized strongly semiprime modules and established that R_R is strongly semiprime if and only if the ring R is right strongly semiprime in the sense of Handelman [4]. Generalizing the concept of endosimple, we call an R-module semi-endosimple if it has no proper fully invariant essential submodules. Clearly every quasi-injective strongly semiprime module is semi-endosimple, but in general strongly semiprime and semi-endosimple are different conditions; see Remark and Example 3.7. The study of semi-endosimple modules is useful as we are able to give new characterizations of some diver types of rings including right Noetherian V-rings and strongly semiprime rings in terms of semi-endosimplicity of certain modules. Our investigation is centered on quasi-projective and/or quasi-injective modules that are semi-endosimple. One notable feature of semi-endosimplicity is the left-right symmetry that it can impose on the ring, in contrast to the fact that being strongly semiprime is not a symmetric property for rings. Our first observation is that R_R is semi-endosimple if and only if R_R is semi-endosimple if and only if R is isomorphic to a finite direct sum of simple rings. Replacing R_R by a (non-zero) quasi-projective retractable module M, we prove in Theorem 2.2 that M_R is finitely generated semi-endosimple if and only if S_S is semi-endosimple where $S = \text{End}_R(M)$. Here M_R is called retractable if $\text{Hom}_R(M, N) \neq 0$ for any non-zero submodule $N \leq M_R$. We then establish some structural results on the ring equivalent to the semi-endosimplicity of certain cyclic modules; see Theorem 2.5. The final result in §2 is a characterization of rings for which all finitely generated modules are semi-endosimple. In §3 we find conditions on a module M_R that are equivalent to the semi-endosimplicity of M_R, and then deduce that the class of semi-endosimple R-modules is closed under taking quasi-injective hulls. Applying these results to R_R we obtain some new characterizations of right strongly semiprime rings.

2. Finitely generated semi-endosimple modules

Throughout the paper for a ring R we denote the class of semi-endosimple R-modules by $\mathcal{C} = \mathcal{C}(R)$. If the regular module R_R is in \mathcal{C} then clearly R is a right strongly semiprime ring, that is, every ideal of R, essential as a right ideal, contains a finite subset with zero annihilator.

Proposition 2.1. The following statements are equivalent for a ring R.
(i) R_R is semi-endosimple.
(ii) $I + r.\text{ann}_R(I) = R$ for every ideal I of R.
(iii) R is isomorphic to a finite direct sum of simple rings.
(iv) R_R is semi-endosimple.
(v) $I + l.\text{ann}_R(I) = R$ for every ideal I of R.
Proof. (i)⇒(ii). Let I be an ideal of R. Then $I + r.\ann_R(I)$ is an ideal which is essential as a right ideal. Thus $I + r.\ann_R(I) = R$ by (i).

(ii)⇒(iii). Suppose first that I is an ideal of R with zero square. Then $I \subseteq r.\ann_R(I)$, hence $I = 0$ by (ii). It follows that R is a semiprime ring. This in turn implies that the right annihilator of any essential right ideal of R is zero. Consequently, R_R is semi-endosimple. Hence R being right strongly semi-prime, it has only finitely many minimal prime ideals, say P_1, \ldots, P_k, and $\bigcap_{i=1}^k P_i = 0$, see [4]. Since in any ring a prime ideal is either minimal or essential as a right ideal, we deduce that any maximal ideal of R is a minimal prime. Therefore each P_i is a maximal ideal and R is in fact isomorphic to the finite direct sum of simple rings $R/P_1 \oplus \cdots \oplus R/P_k$. The other implications are immediate.

In the following result we generalize the equivalence (i)⇔(iii) of Proposition 2.1.

Theorem 2.2. Let M be a quasi-projective retractable R-module. Then the following are equivalent.

(i) M is a finitely generated R-module in \mathcal{C}.
(ii) $\End_R(M)$ is isomorphic to a finite direct sum of simple rings.

Proof. (i)⇒(ii). Let $S = \End_R(M)$. In view of Proposition 2.1, we shall show that S is semi-endosimple. Let I be an ideal of S, which is essential as a right ideal. The fully invariant submodule IM is then essential. For, let N be a non-zero submodule of S such that $IM \cap N = 0$. By condition on M, we can pick $0 \neq g \in S$ such that $g(M) \subseteq N$. Note that $IM \cap g(M) = 0$ and hence $\Hom_R(M, IM) \cap \Hom_R(M, g(M)) = 0$. Thus $I \cap gS = 0$, a contradiction, see [6, 18.4]. Now by semi-endosimplicity assumption of M we have $M = IM$. Therefore $I = \Hom_R(M, IM) = S$.

(ii)⇒(i). Suppose that $S = S_1 \oplus \cdots \oplus S_n$, for some ideals S_1, \ldots, S_n such that each S_i is a simple ring with unity e_i where $1_S = e_1 + \cdots + e_n$. The idempotent endomorphisms e_1, \ldots, e_n are central and mutually orthogonal, giving $M = e_1 M \oplus \cdots \oplus e_n M$. Since $\Hom_R(e_i M, e_j M) = 0$ whenever $i \neq j$, the endomorphism ring of R–submodule $e_i M$ is isomorphic to S_i for each $i = 1, \ldots, n$. Fix j, and $0 \neq x \in L := e_j M$ and set $T = \End_R(L)$. By our assumption on M, it is easily seen that $\Hom_R(L, xR) \neq 0$. If $0 \neq f : L \to xR$, then by simplicity of T we have $TfT = T$, hence $\sum_{i=1}^n t_i ft_i' = 1_T$ for some t_i and t_i' in T for $1 \leq i \leq n$. It follows that for any $y \in L$, $\sum_{i=1}^n t_i ft_i'(y) = y$ and so $y = t_1 f(m_1) + \cdots + t_n f(m_n)$ where $m_i' = t_i(y)$. Because $\text{Im } f \subseteq xR$ we have $y = t_1(xr_1) + \cdots + t_n(xr_n) = t_1(x)r_1 + \cdots + t_n(x)r_n$ for some $r_i \in R$.

Semi-endosimple modules 333
Consequently, \(t_1(x)R + \cdots + t_n(x)R = L \). Therefore each \(e_iM \) is a finitely generated \(R \)-module, hence \(M_R \) is finitely generated. Let \(N \) be a fully invariant essential submodule of \(M_R \), and set \(I = \text{Hom}_R(M,N) \). Then \(I \) is a two sided ideal of \(S \), and we show below that it is essential as a right ideal. Suppose \(I \cap fS = 0 \) for some \(f \in S \). Since \(M_R \) is finitely generated quasi-projective, \(fS = \text{Hom}_R(M,f(M)) \), hence \(0 = \text{Hom}_R(M,N) \cap fS = \text{Hom}_R(M,N \cap f(M)) \). Thus our assumption on \(M \) yields \(N \cap f(M) = 0 \). But \(N \) is assumed essential, thus \(f(M) = 0 \), and so \(f = 0 \). Therefore by Proposition 2.1, \(I = S \), and consequently \(N = M \).

Corollary 2.3. Over a simple ring \(R \), finitely generated projective modules are in \(\mathcal{C} \).

Proof. Let \(M_R \) be finitely generated projective. Then \(\text{Tr}_R(M,R) \) is a non-zero ideal of \(R \) and so is equal to \(R \) by hypothesis. It follows that \(M_R \) is a progenerator for \(\text{Mod-}R \). Consequently \(S = \text{End}_R(M) \), being Morita equivalent to \(R \), is a simple ring (see e.g., [6, 46.4]). The result is now clear by Theorem 2.2.

The next result collects some properties of \(\mathcal{C} \). We shall later show that \(\mathcal{C} \) is also closed under quasi-injective hull extensions.

Proposition 2.4. (i) The class \(\mathcal{C} \) is close under direct sums.
(ii) \(M \in \mathcal{C} \) if and only if \(M^{(\Lambda)} \in \mathcal{C} \) for any index set \(\Lambda \) if and only if \(M^{(\Lambda)} \in \mathcal{C} \) for some index set \(\Lambda \).
(iii) If \(M \in \mathcal{C} \) then \((M \oplus M/N) \in \mathcal{C} \) for all \(N \leq M \).

Proof. (i) Consider an arbitrary family \(\{M_\lambda\}_{\lambda \in \Lambda} \) of semi-endosimple \(R \)-modules and let \(N \) be a fully invariant essential submodule of \(M = \bigoplus_{\lambda \in \Lambda} M_\lambda \). Let \(N_\lambda = \overline{M_\lambda} \cap N \) where \(\overline{M_\lambda} \) is the image of the canonical injection \(i_\lambda : M_\lambda \to M \). Clearly, each \(N_\lambda \) is an essential \(R \)-submodule of \(\overline{M_\lambda} \). Since \(\overline{M_\lambda} \) is a direct summand of \(M_R \), every element in \(\text{End}_R(\overline{M_\lambda}) \) can be extended to an element in \(\text{End}_R(M) \) and so \(N_\lambda \) is also a fully invariant \(R \)-submodule of \(\overline{M_\lambda} \). Therefore \(N_\lambda = \overline{M_\lambda} \) by semi-endosimplicity of \(\overline{M_\lambda} \) \(\simeq M_\lambda \). Thus \(\overline{M_\lambda} \subseteq N \) for all \(\lambda \in \Lambda \), giving \(M = N \), proving that \(M \in \mathcal{C} \).
(ii) This is proved by (i) and the fact that if \(N \) is a fully invariant essential submodule of \(M_R \), then \(N^{(\Lambda)} \) is an fully invariant essential submodule of \(M_R^{(\Lambda)} \) for any index set \(\Lambda \).
(iii) Let \(0 \neq M \in \mathcal{C} \), \(N \leq M \) and \(K \) be any fully invariant submodule of \(M \oplus M/N \). As it is seen in the proof of (i), \(K = W \oplus L \) for some fully invariant essential submodules of \(M \) and \(M/N \) respectively. Because \(M \) is semi-endosimple, \(W = M \) or \(W = 0 \). If \(W = 0 \) then \(K = 0 \oplus L \) cannot be essential. Therefore \(W = M \) and hence \(K = M \oplus L \). On the other hand, the canonical
projection $\pi : M \to M/N$ can be extended to $\alpha : M \oplus M/N \to M \oplus M/N$ by $\alpha(m, \pi(m')) = (0, \pi(m))$ for all $m, m' \in M$. Thus $\alpha(K) = (0, M/N) \subseteq K$. It follows that $L = M/N$. Consequently, $K = M \oplus M/N$, proving that $(M \oplus M/N) \in C$.

We recall that a ring R is said to be a right V-ring if any simple right R-module is injective or equivalently any right R-module has zero Jacobson radical see e.g., [6, 23.1].

Theorem 2.5. (i) The ring R is a right V-ring if and only if every cyclic cocyclic R-module is in C.

(ii) R is right Noetherian right V-ring if and only if every cyclic R-module which is an essential extension of a semisimple module is in C.

(iii) A hereditary left Noetherian ring R is a finite direct sum of simple Noetherian right V-rings if and only if all finitely generated R-modules are in C.

Proof. We only prove (ii) and (iii).

(ii) The necessity follows from the fact that a ring R is right Noetherian if and only if any direct sum of cocyclic R-modules is injective; see [6, 27.3]. Conversely, let M be a direct sum of cocyclic R-modules and $x \in E = E(M_R)$. Then $\text{Soc}(E_R) \subseteq M$ and xR is a cyclic R-module which is an essential extension of a semisimple module. Thus by our assumption xR is semi-endosimple. Because $\text{Soc}(xR)$ is a fully invariant essential submodule, xR must be semisimple. It follows that $\text{Soc}(E_R) = M = E(M_R)$.

(iii) The sufficiency is by Proposition 2.4(i) and part (ii) above. Conversely, let $R = R_1 \oplus \cdots R_n$ be a finite direct sum of hereditary simple Noetherian right V-rings and let M be a finitely generated R-module. Then $M = M_1 \oplus \cdots \oplus M_n$, where each M_i is a finitely generated R_i-module. If each M_i is a semi-endosimple R_i-module, then all $M_i(1 \leq i \leq n)$ are semi-endosimple R-modules and hence $M \in C$ by Proposition 2.4(i). Therefore, we shall show that each M_i is a semi-endosimple R_i-module. Now fix i and let $L = M_i$. By [5, Lemma 5.7.4] the torsion submodule $\tau(L)$ has finite length, $L/\tau(L)$ is projective and $L \cong \tau(L) \oplus L/\tau(L)$. By Corollary 2.3, $L/\tau(L)$ is semi-endosimple. Also $\tau(L)$ being Artinian it has an essential socle, and since R_i is a V-ring, the socle is injective. Thus $\tau(L)$ is semisimple, hence semi-endosimple. Applying Proposition 2.4(i) yields L_{R_i} semi-endosimple, as wanted.

If R is the Weyl algebra over the complex field, then R is a simple Noetherian domain but not a V-ring, hence there exists a cyclic R-module which is not semi-endosimple. This shows that the class of rings with all finitely generated modules semi-endosimple lies properly between the class of semisimple rings and the class of rings that are finite direct sum of simple rings.
We are now going to characterize rings over which all finitely generated modules are in \mathcal{C}. First recall that for a right ideal I in a ring R, $\text{Idealizer}(I) = \{ r \in R \mid rI \subseteq I \}$ and that $\text{End}_R(R/I) \cong \text{Idealizer}(I)/I$ as rings.

Lemma 2.6. All cyclic R–modules are in \mathcal{C} if and only if for any pair of non-zero proper right ideals $I \subseteq J$, the condition $\text{Idealizer}(I) \subseteq \text{Idealizer}(J)$ implies that there exists an element $x \in R \setminus I$ with $xR \cap J \subseteq I$. In this case, all quasi-injective R-modules are in \mathcal{C}.

Proof. Suppose $0 \neq I \subseteq J$ are proper right ideals with $\text{Idealizer}(I) \subseteq \text{Idealizer}(J)$. Then J/I is a proper fully invariant submodule of R/I. If the cyclic module R/I is semi-endosimple, then J/I cannot be essential in R/I, which is equivalent to the existence of an element $x \in R \setminus I$ with $xR \cap J \subseteq I$. The proof of the converse statement is similarly done. For the last statement, let N be a fully invariant essential submodule of a quasi-injective R-module M and $0 \neq m \in M$. It easy to verify that $L := N \cap (mR)$ is an essential submodule of mR. Because M_R is quasi-injective, L is also a fully invariant R-submodule of mR. Hence by semi-endosimplicity of mR, we have $L = mR$ and so $m \in N$, proving that $N = M$.

Lemma 2.7. Let R be any ring and $S = \text{Mat}_{n \times n}(R)$ for some $n \geq 1$. Then M_R is semi-endosimple if and only if $M^{(n)}$ is semi-endosimple as an S–module (with the natural S–module structure).

Proof. (\Rightarrow). Let K be a fully invariant essential S-submodule of $M^{(n)}$. Then $K = Ke_1 \oplus \ldots \oplus Ke_n$ where e_i is the i-th unit matrix. It is easy to check that each Ke_i is an essential R–submodule of $M^{(n)}e_i \cong M$. Also each Ke_i is a fully invariant R–submodule of $M^{(n)}e_i$. To see this, let $f : (M,0,\ldots,0) \to (M,0,\ldots,0) = M^{(n)}e_1$ be an R–map. Define $g : M^{(n)} \to M^{(n)}$ by $g[(m_1,\ldots,m_n)] = (m'_1,\ldots,m'_n)$ where $f[(m_i,0,\ldots,0)] = (m'_i,0,\ldots,0)$. We claim that g is an S-map. If $A = (a_{ij})_{n \times n} \in S$, then $(m_1,\ldots,m_n)A = (\sum_{i=1}^n m_ia_{i1},\ldots,\sum_{i=1}^n m_ia_{in}) =: (t_1,\ldots,t_n)$. Let $g[(m_1,\ldots,m_n)]A = (t'_1,\ldots,t'_n)$ where $f[(t_j,0,\ldots,0)] = (t'_j,0,\ldots,0)$ for $j = 1,\ldots,n$. This shows that $t'_j = \sum_{i=1}^n m'_ia_{ij}$ for $j = 1,\ldots,n$. Thus $(t'_1,\ldots,t'_n) = (m'_1,\ldots,m'_n)A$, as desired. Now $f(Ke_1) = f(K \cap M^{(n)}e_1) = g(K \cap M^{(n)}e_1) \subseteq (K \cap M^{(n)}e_1) = Ke_1$, proving that Ke_1 is a fully invariant R–submodule of $M^{(n)}e_1$. Similarly, each Ke_i is a fully invariant R–submodule of $M^{(n)}e_i$. Now by our assumption, $Ke_i = M^{(n)}e_i$ for all i, hence $K = M^{(n)}$.

(\Leftarrow). If N is a fully invariant essential R-submodule of M then $N^{(n)}$ is fully invariant essential in $M_S^{(n)}$, hence $N = M$.

M. Baziar, A. Haghany and M. R. Vedadi
Theorem 2.8. The following are equivalent statements on a ring R.
(i) All finitely generated right R-modules are in \mathcal{C}.
(ii) For any $n \geq 1$, and any non-zero proper right ideals $I \subseteq J$ of $S = \text{Mat}_{n \times n}(R)$ the condition $\text{Idealizer}(I) \subseteq \text{Idealizer}(J)$ implies that $xS \cap J \subseteq I$ for some $x \in S \setminus I$.

Proof. Let $n \geq 1$ and $S = \text{Mat}_{n \times n}(R)$. Using the standard Morita equivalence of $\text{Mod-}R$ with $\text{Mod-}S$, we know that a right R-module generated by n elements correspond to a cyclic right S-module, and conversely a cyclic right S-module corresponds to a finitely generated right R-module. Thus the result follows from Lemmas 2.6 and 2.7.

A concrete example of a non-semisimple ring whose finitely generated modules are semi-endosimple is provided by Cozzens’s example $R = K[x, D]$ where K is a universal field with derivation D. It is well known that R is a simple principal right (and left) ideal domain with a unique (up to isomorphism) simple injective R-module. Hence it follows either directly or by Theorem 2.5(iii), that any finitely generated R-module is in $\mathcal{C}(R)$.

3. Quasi-injective modules in \mathcal{C}

Proposition 3.1. The following are equivalent for a quasi-injective R-module M.
(i) $M \in \mathcal{C}$.
(ii) M_R is generated by any essential submodule.
(iii) $M = \bigcap N$ where the intersection runs through the set of fully invariant essential R-submodules of $E(M_R)$.

Proof. (i)⇒(ii). Let M_R be semi-endosimple and let N be an essential submodule of M. Then $\text{Tr}_R(N, M)$ is a fully invariant essential submodule of M_R. Thus by our assumption, $\text{Tr}_R(N, M) = M$, so M is generated by N.
(ii)⇒(iii). Let $E = E(M_R)$ and $L = \bigcap N$ where the intersection runs through the set of fully invariant essential R-submodules of E_R. Because M is quasi-injective, M is a fully invariant (and essential) submodule of E_R, hence $L \subseteq M$. Now let N be any fully invariant essential submodule of E_R. Then it is easy to verify that $W := N \cap M$ is a fully invariant essential submodule of M_R. Thus by (ii), $\text{Tr}_R(W, M) = M$. On the other hand, the quasi-injectivity of M implies that $\text{Tr}_R(W, M) = W$. Consequently $W = M$ that is $M \subseteq N$. Therefore $M \subseteq L$ and so $M = L$.
(iii)⇒(i). By the fact that being fully invariant and essential are transitive properties.
Theorem 3.2. The following statements are equivalent for an R-module M.

(i) $\hat{M}_R \in \mathcal{C}$.

(ii) For any essential submodule N of M, there exists an index set Λ such that $M \cong W/L$ for some $L \leq W \leq N^{(\Lambda)}_R$.

(iii) For any fully invariant essential submodule N of M, there exists an index set Λ such that $M \cong W/L$ for some $L \leq W \leq N^{(\Lambda)}_R$.

Proof. (i)\Rightarrow(ii). Let N be an essential submodule of M_R. By Proposition 3.1, $\operatorname{Tr}_R(N, M_R) = M_R$. Fix $m \in M$, then $m \in f_1(N) + \cdots + f_t(N)$ for some $f_1, \ldots, f_t \in \text{Hom}_R(N, M)$. Let $W_m = \{(x_1, \ldots, x_t) \in N^{(t)} | \sum_{i=1}^t f_i(x_i) \in mR\}$. Clearly, W_m is an R-submodule of $N^{(t)}$. Now if $\theta : W_m \to mR$ is defined by $\theta_m(n_1, \ldots, n_t) = \sum_{i=1}^t f_i(n_i)$, then θ_m is a surjective R-homomorphism. Consequently, there exists an R-epimorphism $\alpha = \sum_{m \in M} \theta_m$ from $W := \bigoplus_{m \in M} W_m$ to M, as desired.

(ii)\Rightarrow(iii). This is clear.

(iii)\Rightarrow(i). Let N be a fully invariant essential submodule of M_R. Then $N \cap M$ is a fully invariant essential submodule of M_R. Thus by (iii), there exists a surjective R-homomorphism $\theta : W \to M$, where W is an R-module of $N^{(\Lambda)}$ for some index set Λ. Now because M_R is $N^{(\Lambda)}$-injective, θ can be extended to a map $\bar{\theta} \in \text{Hom}_R(N^{(\Lambda)}, M_R)$. Note that $\alpha(N) \subseteq N$ for any $\alpha \in \text{Hom}_R(N, \hat{M}_R)$. Thus if $x = \sum_{i=1}^t \iota_i(n_i) \in N^{(\Lambda)}$ where each $\iota_i : N \to N^{(\Lambda)}$ is the canonical injection, then $\bar{\theta}(x) = \sum_{i=1}^t \bar{\theta}\iota_i(n_i) \in N$. Hence $\bar{\theta}(N^{(\Lambda)}) \subseteq N$, yielding $M = \theta(W) = \bar{\theta}(W) \subseteq N$. It follows that $M_R = \text{End}_R(M_R)M \subseteq \text{End}_R(M_R)N = N$, proving that $M_R \in \mathcal{C}$.

We now give a number of applications of Theorem 3.2.

Corollary 3.3. The class \mathcal{C} is closed under quasi-injective hull extensions.

Corollary 3.4. The following are equivalent for a quasi-projective R-module M.

(i) $\hat{M}_R \in \mathcal{C}$.

(ii) For any essential submodule N of M, there exists an index set Λ such that M_R embeds in $N^{(\Lambda)}$.

(iii) For any fully invariant essential submodule N of M, there exists an index set Λ such that M_R embeds in $N^{(\Lambda)}$.

Proof. Note that if $N \leq M_R$ and V is a direct sum of copies of N, then M is W-projective for any submodule W of V. Hence, $M \cong W/L$ for some $L \leq W \leq N^{(\Lambda)}_R$ if and only if M_R embeds in $N^{(\Lambda)}$. The result is now clear by Theorem 3.2.
Recall that an R-module M is co-faithful if R_R embeds in a (finite) direct sum of copies of M_R.

Corollary 3.5. The following are equivalent statements on a ring R.
(i) R is a right strongly semiprime ring.
(ii) $E(R_R) \in \mathcal{C}$.
(iii) $E(F_R) \in \mathcal{C}$, for any free R-module F.
(iv) $	ext{Mod-}R$ contains a co-faithful semi-endosimple object.
(v) There exists $M \in \mathcal{C}$ such that R embeds into M_R.

Proof. (i)\Rightarrow(ii). By Corollary 3.4.
(ii)\Rightarrow(iii). Let $E = E(R_R)$ and $F \simeq \bigoplus A R := \hat{L}$ be a free R-module. Then \hat{L} is an essential submodule of $\bigoplus A E := W$ and we have $\hat{W} = \hat{L} \simeq \hat{F} = \text{Tr}_R(F, E(F_R)) = E(F_R)$. By (ii) and Proposition 2.4(i), \hat{W} is in \mathcal{C}, hence $\hat{W} \in \mathcal{C}$ by Corollary 3.3. The proof is completed.
(iii)\Rightarrow(iv). This is clear.
(iv)\Rightarrow(v). By Proposition 2.4(i).
(v)\Rightarrow(i). Suppose that (v) holds and I is a two sided ideal of R which is essential as a right ideal, and let $N = \text{ann}_M(I)$. It is easily shown that $MI + N$ is a fully invariant essential submodule of M (for essentiality, note that if $0 \neq K \leq M_R$, then either $KI = 0$ or $KI \neq 0$). Hence $MI + N = M$ by semi-endosimplicity of M_R. Because R embeds into M_R, there exists $m \in M$ such that $r.\text{ann}_R(m) = 0$. Thus there are finitely many elements $m_j \in M$, $a_j \in I$, $j = 1, \ldots, k$, and an element $n \in N$ such that $\sum_{j=1}^k m_j a_j + n = m$. Now $(\bigcap_j r.\text{ann}_R(a_j)) \cap I \subseteq r.\text{ann}_R(m) = 0$, and by essentiality of I, we deduce that $\bigcap_j r.\text{ann}_R(a_j) = 0$, showing that R is a right strongly semiprime ring.

Corollary 3.6. Over a prime right Goldie ring R, any injective torsion free R-module is in \mathcal{C}.

Proof. Let R be a prime right Goldie ring and M be an injective torsion free R-module. Then there exists a positive integer n such that $M^{(n)}$ is an essential extension of a free R-module, see [3, Corollary 7.26]. The result is now obtained by Corollary 3.5 and Proposition 2.4(ii).

Remark and Example 3.7. In [1], it is shown that R is a right strongly semiprime ring if and only if R_R is strongly semiprime. Hence by Corollary 3.5, $E(R_R) \in \mathcal{C}$ if and only if $E(R_R)$ is strongly semiprime. However, in general an injective module in \mathcal{C} need not be strongly semiprime. To see this, consider the \mathbb{Z}-module $M = \mathbb{Z}_{p^\infty} \oplus \mathbb{Q}$, $(p$ a prime) with $S = \text{End}_\mathbb{Z}(M)$. While this (injective) \mathbb{Z}-module is semi-endosimple by Proposition 2.4(iii) and Corollary 3.6, it is not strongly semiprime, since the lattice of (S, \mathbb{Z})-bisubmodules of M
has a proper essential element, namely $Z_p \oplus 0$.

Acknowledgement. This research is partially supported by IUT (CEAMA).

References

Received: September, 2008