On P-Hereditary and P-Semihereditary Rings

Chahrazade Bakkari and Aziza Rahmouni Hassani

Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Morocco
cbakkari@hotmail.com, rahmounihassani@yahoo.fr

Abstract

In this paper, we introduce the notion of “P-semihereditary” (resp., “P-hereditary”) rings which is a generalization of the notion of “semihereditary” (resp., “hereditary”) rings. Then we establish the transfer of this notion to trivial ring extensions and direct products. We conclude with a brief discussion of the scope and limits of our results.

Mathematics Subject Classification: 16S50

Keywords: P-hereditary rings, P-semihereditary rings, trivial ring extensions, direct products

1 Introduction

All rings considered below are commutative with unit and all modules are unital. Recall that a ring R is called hereditary (resp., semihereditary) if every ideal (resp., finitely generated ideal) of R is projective. Any hereditary (resp., semihereditary) ring is coherent (recall that a ring is called coherent if every finitely generated ideal of R is finitely presented). We introduce a new concept of a “P-hereditary (resp., P-semihereditary)” ring. A ring R is called P-hereditary (resp., P-semihereditary) if every prime ideal (resp., finitely generated prime ideal) of R is projective. A hereditary (resp., semihereditary) ring is naturally a P-hereditary (resp., P-semihereditary) ring.

Let A be a ring, E be an A-module and $R := A \otimes E$ be the set of pairs (a, e) with pairwise addition and multiplication given by: $(a, e)(b, f) = (ab, af + be)$. R is called the trivial ring extension of A by E. Recall that a prime ideal of R has always the form $Q \otimes E$, where Q is a prime ideal of A [3, Theorem 25.1]. Considerable work, part of it summarized in Glaz’s book [2] and Huckaba’s book [3], has been concerned with trivial ring extensions. These have proven to be useful in solving many open problems and conjectures for various contexts.
in (commutative and non-commutative) ring theory. See for instance \[2, 3, 5\].

Our aim in this paper is to prove that P-hereditary (resp., P-semihereditary) rings are not hereditary (resp., semihereditary)” in general. Further, we investigate the possible transfer of the P-hereditary (resp., P-semihereditary) property to various trivial extension constructions and to direct products.

2 Main Results

In this section, we study the possible transfer of the P-hereditary (resp., P-semihereditary) property to various trivial extension contexts and to direct products. First, we examine the context of trivial ring extensions of a domain by its quotient field.

The next theorem not only serves as a prelude to the construction of examples, but also contributes to the study of the homological algebra of trivial ring extensions.

Theorem 2.1 Let A be a domain which is not a field, $K = qf(A)$, and $R := A \times K$ be the trivial ring extension of A by K. Then:

1) R is a P-semihereditary ring if and only if A is a P-semihereditary ring.
2) R is not a P-hereditary ring.
3) R is not coherent. In particular, R is neither hereditary nor semihereditary.

Proof. 1) Assume that R is P-semihereditary and let $Q := \sum_{i=1}^{n} Ab_i$ be a nonzero finitely generated prime ideal of A, where $b_i \in Q$ for each $i = 1, \ldots, n$. Set $P := Q \times K$. Then, $P \in \text{Spec}(R)$ by [3, Theorem 25.1] and $P = \sum_{i=1}^{n} R(b_i, 0)$ since $bK = K$ for each $b \in A - \{0\}$; so $P(= Q \otimes_A R)$ is a projectif ideal of R. Therefore, Q is a projectif ideal of A since R is a faithfully flat A-module.

Conversely, assume that A is P-semihereditary and let P be a finitely generated prime ideal of R. Then, $P = Q \times K$, where Q is a finitely generated prime ideal of A. Hence, Q is a projectif ideal of A since A is P-semihereditary. Therefore, $P(= Q \otimes_A R)$ is a projectif ideal of R since R is a faithfully flat A-module.

2) We claim that $0 \times K$ which is a prime ideal of R is not projectif. Deny. Then $0 \times K$ is a projectif ideal of $R(= A \times K)$. Let p be a nonzero prime ideal of A and let $T = A_p \times K$. Then $R \subseteq T = S^{-1}R$, where $S = A - p$ i a multiplicative set of A and of R. Therefore, $0 \times K = (0 \times K)T = (0 \times
$K \otimes_R T$ is a projective ideal of T (since $0 \otimes K$ is a projective ideal of R and since T is a flat A-module). Hence, $0 \otimes K$ is a free ideal of T since T is a local ring, a contradiction since $(0 \otimes K)(0, e) = 0$ for each $0 \neq e \in K$.

Hence, $0 \otimes K$ is not projective ideal of R and this shows that R is not P-hereditary.

3) R is not coherent since $R(0, 1)$ is a finitely generated ideal of R which is not finitely presented by the exact sequence of R-modules:

$$0 \to 0 \otimes K \to R \overset{u}{\to} R(0, 1) \to 0$$

where $u(a, e) = (a, e)(0, 1) = (0, a)$ (since $0 \otimes K$ is not a finitely generated ideal of R).

If A is a Prüfer domain, we obtain by Theorem 2.1:

Corollary 2.2 Let A be a Prüfer domain which is not a field, $K = qf(D)$, and $R := A \otimes K$ be the trivial ring extension of A by K. Then R is P-semihereditary which is neither P-hereditary nor coherent.

Now, we prove that the condition "A is not a field" is necessary in Theorem 2.1.

Example 2.3 Let K be a field and n be a positive integer. The trivial ring extension $R := K \otimes K^n$ of K by K^n is not P-semihereditary.

Proof. Let $P := 0 \otimes K^n$ which is a finitely generated prime ideal of R. We claim that P is not projective. Deny. Then P is free since R is a local ring, a contradiction since $(0 \otimes K^n)(0, e) = 0$ for each $0 \neq e \in K^n$. Hence, R is not a P-semihereditary ring.

Nevertheless, if A is a field and E is a K-vector space with infinite rank, we have:

Theorem 2.4 Let K be a field, E be a K-vector space with infinite rank and let $R := K \otimes E$ be the trivial ring extension of K by E. Then:

1) R is a P-semihereditary ring.
2) R is not a P-hereditary ring.
3) R is not coherent. In particular, R is neither hereditary nor semihereditary.

Proof. 1) R is a P-semihereditary ring since the only proper prime ideal of R is $0 \otimes E$ which is not a finitely generated ideal of R (since E is a K-vector space with infinite rank).
2) R is not P-hereditary since $0 \propto E$ is a prime ideal of R which is not projectif since it is not free (since R is local and $(0 \propto E)(0, e) = 0$ for each $0 \neq e \in E$).

3) R is not coherent since R is a 2-Von Neumann regular ring which is not a Von Neumann regular ring by [4, Theorem 3.4].

Next, we explore a different context, namely, the trivial ring extension of a local domain (A, M) by an A-module E such that $ME = 0$.

The next theorem not only serves as a prelude to the construction of examples, but also contributes to the study of the homological algebra of trivial ring extensions.

Theorem 2.5 Let (A, M) be a local domain, E an A-module with $ME = 0$, and let $R := A \propto E$ be the trivial ring extension of A by E. Then:

1) R is a P-semihereditary ring if and only if E is an (A/M)-vector space of infinite rank.

2) R is not a P-hereditary ring.

Before proving Theorem 2.5, we establish the following Lemma.

Lemma 2.6 Let (A, M) be a local ring, E an A-module with $ME = 0$, and let $R := A \propto E$ be the trivial ring extension of A by E. Then R does not contain any proper projectif ideal.

Proof. Let J be a proper ideal of R. We claim that J is not projectif.
Deny. Then J is free since R is local. But $J \subseteq (M \propto E)$ (since R is a local ring and $M \propto E$ is its maximal ideal) and $(M \propto E)(0, e) = 0$ for each $0 \neq e \in E$, so $J(0, e) = 0$ for each $0 \neq e \in E$, a contradiction since J is free. Hence J is not projectif as desired.

Proof of Theorem 2.5.

1) It is clear by Lemma 2.6 that R is P-semihereditary if and only if there is no proper finitely generated prime ideal of R.

Assume that R is P-semihereditary. We claim that E is an (A/M)-vector space of infinite rank. Deny. Then E is an (A/M)-vector space of finite rank and let $(x_i)_{i=1,...,m}$ be its basis. Then $P := 0 \propto E = \sum_{i=1}^m R(0, x_i)$ is a proper finitely generated prime ideal of R, a contradiction by Lemma 2.6 and since R is P-semihereditary. Hence, E is an (A/M)-vector space of infinite rank.

Conversely, assume that E is an (A/M)-vector space of infinite rank. We claim that there is no proper finitely generated prime ideal of R. Deny. Let $P := Q \propto E = \sum_{i=1}^n R(b_i, x_i)$ be a proper finitely generated prime ideal of R, where Q is a prime ideal of A and $b_i \in Q$, $x_i \in E$ for each $i = 1, \ldots, n$.

Then \(E \subseteq \sum_{i=1}^{n}(A/M)x_i \) (since \(b_iE = 0 \) for each \(i = 1, \ldots, n \)), and hence \(E \) is an \((A/M)\)-vector space of finite rank, a contradiction. Therefore, there is no proper finitely generated prime ideal of \(R \) and so \(R \) is \(P \)-semihereditary.

2) \(R \) is not \(P \)-hereditary since \(M \propto E \) is a proper prime ideal which is not projectif by Lemma 2.6 and this completes the proof of Theorem 2.5.

Remark 2.7 In Theorem 2.5, the surprise is that the \(P \)-semihereditary and \(P \)-hereditary properties hold for a trivial ring extension of a local ring \((A, M)\) by an \((A/M)\)-vector space without any hypothesis on the basic ring \(A \).

Next, we study the transfer of the \(P \)-semihereditary (resp., \(P \)-hereditary) property to direct products.

Proposition 2.8 Let \((R_i)_{i=1}^{n}\) be a family of rings. Then, \(\prod_{i=1}^{n} R_i \) is \(P \)-semihereditary (resp., \(P \)-hereditary) if and only if \(R_i \) is \(P \)-semihereditary (resp., \(P \)-hereditary) for each \(i = 1, \ldots, n \).

We need the following Lemma before proving Proposition 2.8.

Lemma 2.9 ([4, Lemma 2.5]) Let \((R_i)_{i=1,2}\) be a family of rings and \(E_i \) an \(R_i \)-module for \(i = 1, 2 \). Then:

1) \(E_1 \prod E_2 \) is a finitely generated \(R_1 \prod R_2 \)-module if and only if \(E_i \) is a finitely generated \(R_i \)-module for \(i = 1, 2 \).

2) \(E_1 \prod E_2 \) is a projectif \(R_1 \prod R_2 \)-module if and only if \(E_i \) is a projectif \(R_i \)-module for \(i = 1, 2 \).

Proof of Proposition 2.8. By induction on \(n \), it suffices to prove the assertion for \(n = 2 \). Since a prime ideal of \(R_1 \prod R_2 \) is of the form \(P_1 \prod R_2 \) or \(R_1 \prod P_2 \), where \(P_i \) is a prime ideal of \(R_i \) for \(i = 1, 2 \), the conclusion follows easily from Lemma 2.9.

References

Received: October, 2008