Galois Extensions with a Galois Commutator Subring

George Szeto

Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
szeto@bradley.edu

Lianyong Xue

Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
lxue@bradley.edu

Abstract

Let B be a Galois extension of B^G with Galois group G, Δ the commutator subring of B^G in B, and $G|\Delta$ the restriction of G to Δ. Equivalent conditions are given for a Galois extension Δ of Δ^G with Galois group $G|\Delta$. It is shown that the following statements are equivalent: (1) Δ is a Galois extension of Δ^G with Galois group induced by and isomorphic with G/N where $N = \{g \in G \mid g(x) = x \text{ for all } x \in \Delta\}$. (2) $B^G\Delta$ is a Galois extension of B^G with Galois group induced by and isomorphic with G/N and Δ is a finitely generated and projective module over Δ^G. (3) B is a composition of two Galois extensions: $B \supseteq B^G\Delta$ with Galois group N and $B^G\Delta \supseteq B^G$ with Galois group induced by and isomorphic with G/N such that Δ is a finitely generated and projective module over Δ^G. Consequently, more results can be derived for several well known classes of Galois extensions such as DeMeyer-Kanzaki Galois extensions, Azumaya Galois extensions, and Hirata separable Galois extensions.

Mathematics Subject Classification: 16S35, 16W20

Keywords: separable extensions, Azumaya algebras, Galois extensions, DeMeyer-Kanzaki Galois extensions, Azumaya Galois extensions
1 Introduction

Let T be a ring extension of S and $V_T(S)$ the commutator subring of S in T. Properties of $V_T(S)$ play an important role for central simple algebras, Azumaya algebras, Hirata separable extensions, Galois extensions for rings, and Hopf Galois extensions ([1]–[2], [4]–[9]). Let B be a Galois extension of B^G with Galois group G. Then $V_B(B^G) = \oplus \sum_{g \in G} J_g$ where $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ ([4], Proposition 1). In [1], it was shown that if B is a Galois extension of an Azumaya algebra B^G over C^G where C is the center of B, then $V_B(B^G)$ is a Galois algebra over C^G with Galois group induced by and isomorphic with G ([1], Theorem 2). Also, $V_B(B^G)$ is investigated for a Hirata separable Galois extension B with Galois group G ([8]). The purpose of the present paper is to characterize a Galois extension B of B^G with Galois group G such that $V_B(B^G)$ is a Galois extension with Galois group induced by G. We shall show the following equivalent conditions: Let B be a Galois extension of B^G with Galois group G and $\Delta = V_B(B^G)$. (1) Δ is a Galois extension of G^G with Galois group isomorphic with G/N where $N = \{ g \in G \mid g(x) = x \text{ for all } x \in \Delta \}$. (2) $B^G \Delta$ is a Galois extension of B^G with Galois group isomorphic with G/N and Δ is a finitely generated and projective module over G^G. (3) B is a composition of two Galois extensions: (i) $B \supset B^G \Delta$ with Galois group N and (ii) $B^G \Delta \supset B^G$ with Galois group isomorphic with G/N such that $J_{\Delta}^g(\Delta)$ is a finitely generated projective module over G^G for each $g \in G/N$ where $J_{\Delta}^g(\Delta) = \{ b \in \Delta \mid bx = g(x)b \text{ for all } x \in \Delta \}$. Consequently, more results can be derived for several well known classes of Galois extensions such as DeMeyer-Kanzaki Galois extensions, Azumaya Galois extensions, and Hirata separable Galois extensions.

2 Definitions and Notations

Throughout this paper, B will represent a ring with 1, C the center of B, G a finite automorphism group of B, B^G the set of elements in B fixed under each element in G, and $B \ast G$ the skew group ring of G over B, that is, $B \ast G$ is a free left B-module in which the multiplication is given by $gb = g(b)g$ for $b \in B$ and $g \in G$.

Let A be a subring of a ring B with the same identity 1. Following the definitions and notations as given in [9], we denote $V_B(A)$ the commutator (also called centralizer) subring of A in B. We call B a separable extension of A if there exist \{ a_i, b_i in B, $i = 1, 2, ..., k$ for some integer k \} such that $\sum a_i b_i = 1$, and $\sum b_i \otimes a_i b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. We call B a Galois extension of B^G with Galois group G if there exist elements $\{ a_i, b_i$ in B, $i = 1, 2, ..., m \$
for some integer \(m \) such that \(\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g} \) for each \(g \in G \). Such a set \(\{a_i, b_i\} \) is called a \(G \)-Galois system for \(B \). A Galois extension \(B \) of \(B^G \) is called a Galois algebra over \(B^G \) if \(B^G \) is contained in \(C \), and a central Galois algebra if \(B \) is a Galois extension of \(C \). We called \(B \) a center Galois extension with Galois group \(G \) if \(C \) is a Galois algebra over \(C^G \) with Galois group \(G|_C \cong G \), and a commutator Galois extension of \(B^G \) with Galois group \(G \) if \(V_B(B^G) \) is a Galois extension of \((V_B(B^G))^G \) with Galois group \(G|_{V_B(B^G)} \cong G \). A Galois extension \(B \) of \(B^G \) with Galois group \(G \) is called an Azumaya Galois extension if \(B \) is an Azumaya \(C^G \)-algebra. A Galois extension \(B \) of \(B^G \) with Galois group \(G \) is called a DeMeyer-Kanzaki Galois extension if \(B \) is an Azumaya algebra over \(C \) which is a Galois algebra over \(C^G \) with Galois group \(G|_C \cong G \).

A ring \(B \) is called a Hirata separable extension of \(A \) if \(B \otimes_A B \) is isomorphic to a direct summand of a finite direct sum of \(B \) as a \(B \)-bimodule, and \(B \) is called a Hirata separable Galois extension of \(B^G \) if it is a Galois and a Hirata separable extension of \(B^G \).

3 Characterizations

In this section, let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \) and \(\Delta = V_B(B^G) \). We shall characterize \(B \) with a Galois commutator \(\Delta \) with Galois group induced by \(G \). We begin with some basic facts.

Lemma 3.1 Let \(T \) be a ring and \(G \) an automorphism group of \(T \). Then (1) \(V_T(T^G) \) is a \(G \)-invariant subring of \(T \) and (2) \((V_T(T^G))^G \) is contained in the center of \(V_T(T^G) \).

Proof. (1) For any \(g \in G, a \in V_T(T^G), \) and \(x \in T^G \), we have that \(g(a)x = g(ax) = g(xa) = xg(a) \), so \(g(a) \in V_T(T^G) \).

(2) holds because \((V_T(T^G))^G = T^G \cap (V_T(T^G)) \) which is contained in the center of \(V_T(T^G) \).

Let \(N = \{g \in G | g(a) = a \text{ for all } a \in V_T(T^G)\} \). Then part (1) in Lemma 3.1 implies that \(N \) is a normal subgroup of \(G \), and \(V_T(T^G) \) is an algebra over \((V_T(T^G))^G \) by part (2). We shall employ a well known fact for a Galois extension.

Lemma 3.2 Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \) and \(A \) a \(G \)-invariant subring of \(B \) under the action of \(G \). If \(A \) is a Galois extension of \(B^G \) with Galois group induced by \(G \) and isomorphic with \(G \), then \(A = B \).

Now we show the main theorem in this section.
Theorem 3.3 Let B be a Galois extension of B^G with Galois group G, $\Delta = V_B(B^G)$, and $D = \Delta^G$. Then the following statements are equivalent:

(1) Δ is a Galois algebra over D with Galois group induced by and isomorphic with G/N where $N = \{g \in G | g(x) = x \text{ for all } x \in \Delta\}$. (2) $B^G \Delta$ is a Galois extension of B^G with Galois group induced by and isomorphic with G/N and Δ is a finitely generated and projective module over D. (3) B is a composition of two Galois extensions: $B \supset B^G \Delta$ with Galois group N and $B^G \Delta \supset B^G$ with Galois group induced by and isomorphic with G/N such that $J^G_{\Delta}(\Delta)$ is a finitely generated projective module over D for each $g \in G/N$ where $J^G_{\Delta}(\Delta) = \{b \in D | bx = g(x)b \text{ for all } x \in \Delta\}$.

Proof. (1) \implies (2) Since Δ is a Galois algebra over D where $D = \Delta^G$ which in contained in the center of Δ by Lemma 3.1, Δ is a finitely generated and projective module over D. Let $\{a_i, b_i \in \Delta | i = 1, 2, \ldots, m\}$ be a Galois system for Δ. Then $B^G \Delta$ is a Galois extension of $(B^G \Delta)^G (= B^G)$ with Galois group induced by and isomorphic with G/N for Δ because $B^G \Delta$ can take $\{a_i, b_i \in B^G \Delta | i = 1, 2, \ldots, m\}$ as a Galois system.

(2) \implies (1) By hypothesis, $B^G \Delta$ is a Galois extension of B^G with Galois group induced by and isomorphic with G/N, so, by Theorem 1 in [3], the skew group ring

$$(B^G \Delta) * (G/N) \cong \text{Hom}_{B^G}(B^G \Delta, B^G \Delta).$$

Denoting G/N by \overline{G}, we have that

$$\alpha : (B^G \Delta) * \overline{G} \cong \text{Hom}_{B^G}(B^G \Delta, B^G \Delta)$$

by $(\alpha(\sum_{\overline{g} \in \overline{G}} a_{\overline{g}}))(x) = \sum_{\overline{g} \in \overline{G}} a_{\overline{g}}(x)$ for each $x \in B^G \Delta$. Then

$$\Delta * \overline{G} = V_{B^G \Delta \overline{G}}(B^G) \cong V_{\text{Hom}_{B^G}(B^G \Delta, B^G \Delta)}(\alpha(B^G)).$$

Next we claim that $V_{\text{Hom}_{B^G}(B^G \Delta, B^G \Delta)}(\alpha(B^G)) = \text{Hom}_D(\Delta, \Delta)$ where $D = \Delta^G = \Delta^G$. In fact, let $f \in \text{Hom}_{B^G}(B^G \Delta, B^G \Delta)$ such that $f \cdot \alpha(r) = \alpha(r) \cdot f$ for each $r \in B^G$. Then for each $t \in \Delta$, $f(t) = f(tr) = f(rt) = f(\alpha(r)(t)) = (f \cdot \alpha(r))(t) = (\alpha(r) \cdot f)(t)$. This implies that $f(t) \in \Delta$. Thus $f : \Delta \rightarrow \Delta$; and so $V_{\text{Hom}_{B^G}(B^G \Delta, B^G \Delta)}(\alpha(B^G)) \subset \text{Hom}_D(\Delta, \Delta)$ (for $D = B^G \cap \Delta$ by Lemma 3.1). Conversely, let $f \in \text{Hom}_{B^G}(B^G \Delta, B^G \Delta)$ such that $f \in \text{Hom}_D(\Delta, \Delta)$. We claim that $f \cdot \alpha(r) = \alpha(r) \cdot f$ for each $r \in B^G$. In fact, for each $s \in B^G$ and each $a \in \Delta$, $(f \cdot \alpha(r))(sa) = f(ras) = f(ars) = f(a)(rs) = r f(a)s = r f(as) = r f(sa) = (\alpha(r) \cdot f)(sa)$ (for $f(a) \in \Delta$). Thus $f \cdot \alpha(r) = \alpha(r) \cdot f$ for each $r \in B^G$. But then $f \in V_{\text{Hom}_{B^G}(B^G \Delta, B^G \Delta)}(\alpha(B^G))$. This proves that

$$V_{\text{Hom}_{B^G}(B^G \Delta, B^G \Delta)}(\alpha(B^G)) = \text{Hom}_D(\Delta, \Delta).$$
Therefore, \(\alpha : \Delta * \overline{G} \cong \text{Hom}_D(\Delta, \Delta) \). Moreover, by hypothesis, \(\Delta \) is a finitely generated and projective module over \(D \), so \(\Delta \) is a Galois algebra over \(D \) with Galois group isomorphic with \(\overline{G} \) ([3], Theorem 1).

(2) \(\Rightarrow \) (3) Since \(B^G \Delta \) is a Galois extension of \(B^G \) with Galois group induced by and isomorphic with \(\overline{G} (= G/N) \), \(B^N \) containing \(B^G \Delta \) is also a Galois extension of \(B^G (= B^G) \) with Galois group isomorphic with \(\overline{G} \); and so \(B^N = B^G \Delta \) by Lemma 3.2. But then \(B \supset B^G \Delta \) is a Galois extension with Galois group \(N \) and \(B^G \Delta \supset B^G \) is a Galois extension with Galois group induced by and isomorphic with \(\overline{G} (= G/N) \) such that \(\Delta \) is a finitely generated and projective module over \(D \). Noting that \(V_B(B^G) = \Delta = \bigoplus_{\overline{\eta} \in \overline{G}} J^{(\Delta)}_{\overline{\eta}} \) ([4], Proposition 1 and Theorem 1), we have that \(J^{(\Delta)}_{\overline{\eta}} \) is a finitely generated projective module over \(D \) for each \(\overline{\eta} \in G/N \).

(3) \(\Rightarrow \) (2) is clear.

By Theorem 3.3, we shall derive some consequences for several well known classes of Galois extensions. We recall that \(B \) is a center Galois extension with Galois group \(G \) if \(B \) is a Galois extension with Galois group \(G \) such that its center \(C \) is a Galois algebra over \(C^G \) with Galois group \(G|_C \cong G \), and \(B \) is a commutator Galois extension of \(B^G \) with Galois group \(G \) if \(V_B(B^G) \) is a Galois extension of \((V_B(B^G))^G \) with Galois group \(G|_{V_B(B^G)} \cong G \).

Corollary 3.4 Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \). If \(B = B^G C \) such that \(C \) is finitely generated and projective over \(C^G \), then \(B \) a center Galois extension with Galois group \(G \).

Corollary 3.5 Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \). If \(B = B^G \Delta \) such that \(\Delta \) is finitely generated and projective over \(\Delta^G \), then \(B \) a commutator Galois extension with Galois group \(G \).

Remark 3.6 Since a DeMeyer-Kanzaki Galois extension is also a center Galois extension and an Azumaya Galois extension is a commutator Galois extension ([1], Theorem 2), Corollary 3.4 and Corollary 3.5 hold for the classes of DeMeyer-Kanzaki Galois extensions and Azumaya Galois extensions.

Corollary 3.7 Let \(B \) be a Hirata separable Galois extension of \(B^G \) with Galois group \(G \). If \(B = B^G \Delta \), then \(\Delta \) is a Galois algebra with Galois group induced by and isomorphic with \(G/N \).
Proof. Since B is a Hirata separable Galois extension of B^G with Galois group G, J_g is a finitely generated and projective rank one module over C^G for each $g \in G$ ([8], Theorem 2). Hence $\Delta = \oplus g \in G J_g$ is a finitely generated and projective module over C^G. Thus Δ is a Galois algebra over D with Galois group induced by and isomorphic with G/N by Theorem 3.3.

4 The Galois commutator

In section 3, we characterize a Galois extension B with a Galois commutator subring Δ. In this section, we shall give an equivalent condition for Δ as a composition of a central Galois algebra and a commutative Galois algebra. Thus we derive an expression for B as a composition of three Galois extensions. We keep the notations of N, G, and $J^{(\Delta)}$ as given in section 3.

Lemma 4.1 Let B be a Galois extension of B^G with Galois group G. Then $\oplus h \in N J_{gh} \subset J^{(\Delta)}$ for each $g \in G$ and $\Delta = \sum_{g \in G} J^{(\Delta)}$.

Proof. Since B is a Galois extension of B^G with Galois group G, $\Delta = V_B(B^G) = \oplus g \in G J_g = \oplus g \in G \sum h \in N J_{gh}$ ([4], Proposition 1). For any $a \in J_{gh}$ and $x \in \Delta$, we have that $ax = (gh)(x) = g(x)a = \overline{g}(x)a$, so $a \in J^{(\Delta)}$; and so $J_{gh} \subset J^{(\Delta)}$. Thus $\Delta = \oplus g \in G \sum h \in N J_{gh} = \sum_{g \in G} J^{(\Delta)}$.

Theorem 4.2 Let B be a Galois extension of B^G with Galois group G such that Δ is a Galois algebra over D with Galois group induced by and isomorphic with G/N, Z the center of Δ, and $K = \{g \in G | g(a) = a \text{ for all } a \in Z\}$. Then Δ is a central Galois algebra over Z with Galois group induced by and isomorphic with K/N and Z is a commutative Galois algebra over Z^G with Galois group induced by and isomorphic with $(G/N)/(K/N)$ if and only if $J_{gh} = \{0\}$ for each $g \notin K$ and $h \in N$.

Proof. Since Δ is a Galois algebra over D with Galois group induced by and isomorphic with G/N, $\Delta = \oplus g \in G J^{(\Delta)}$. Moreover, Δ is a central Galois algebra over Z with Galois group induced by and isomorphic with K/N if and only if $J^{(\Delta)} = \{0\}$ for each $\overline{g} \notin K/N$, and in this case, Z is a commutative Galois algebra over Z^G with Galois group induced by and isomorphic with $(G/N)/(K/N)$ ([4], Proposition 3). But then $J^{(\Delta)} = \oplus h \in N J_{gh}$ for each $\overline{g} \in G$ by Lemma 4.1. Thus $J^{(\Delta)} = \{0\}$ for each $\overline{g} \notin K/N$ if and only if $J_{gh} = \{0\}$ for each $g \notin K$ and $h \in N$.

G. Szeto and L. Xue
Corollary 4.3 Let B be a Galois extension of B^G with Galois group G such that Δ is a Galois algebra over D with Galois group induced by and isomorphic with G/N, Z the center of Δ, and $K = \{ g \in G | g(a) = a \text{ for all } a \in Z \}$. If $J_{gh} = \{0\}$ for each $g \notin K$ and $h \in N$, then B is a composition of three Galois extensions: (1) $B \supset B^G \Delta$ with Galois group N, (2) $B^G \Delta \supset B^G Z$ with Galois group induced by and isomorphic with K/N, and (3) $B^G Z \supset B^G$ with Galois group induced by and isomorphic with $\overline{G}/\overline{K}$ where $\overline{G} = G/N$ and $\overline{K} = K/N$.

ACKNOWLEDGEMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

Received: March, 2009