On R-Strong Jordan Ideals

Anita Verma

Department of Mathematics
University of Delhi, Delhi 110 007, India
verma.anitaverma.anita945@gmail.com

Abstract. R-strong Jordan Ideals have been defined. Examples have been given to show their existence. It has been proved that the sum of two R-strong Jordan Ideals is an R-strong Jordan Ideal. Also, it has been proved that the intersection of an arbitrary number of R-strong Jordan ideals is an R-strong Jordan ideal. Further, we prove that the product of two R-strong Jordan ideals is also an R-strong Jordan ideal. Finally, a set A_V associated with an R-strong Jordan ideal V has been defined and sufficient condition, under which $A_V \cap V$ is an R-strong Jordan ideal, has been given.

Mathematics Subject Classification: 16A66, 16A72

Keywords: Ideals, Jordan Ideal, R-strong Jordan Ideal

1. Introduction

Throughout the paper, we assume that R is a non-commutative ring, the symbol J denotes the Jordan ideal of R. A ring R is said to be prime if for $a, b \in R, aRb = (0)$ implies $a = 0$ or $b = 0$. An additive subgroup J of R is said to be a Jordan ideal of R if $ur + ru \in J$ for all $u \in J, r \in R$. For $x, y \in R$, by $[x, y]$, we mean $xy - yx$.

An additive subgroup U of R is said to be a Lie ideal of R if $[a, r] \in U$, for all $a \in A, r \in R$.

One may observe that if char $R = 2$, then Jordan ideal and Lie ideal of R are same. Also every ideal of R is Jordan ideal of R but converse need not be true. Further, one may verify that the intersection of an arbitrary number of R-strong Jordan ideals of R is also a Jordan ideal of R.
2. Jordan Ideals

It may be observed that if \(I_1 \) and \(I_2 \) are two ideals of \(R \), then \(I_1 + I_2 \) is an ideal of \(R \). However, it is not true in case of Jordan ideals. Indeed, let \(R \) be a ring of \(2 \times 2 \) matrices over integers and let \(a = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in R \). Then

\[
aR = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}
\]

Since

\[
\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \begin{pmatrix} t & s \\ u & v \end{pmatrix} + \begin{pmatrix} t & s \\ u & v \end{pmatrix} \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} xt + yu & xs + yv \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} tx & ty \\ ux & uv \end{pmatrix} \notin aR,
\]

\(aR \) is not a Jordan ideal of \(R \).

Similarly, \(Ra \) is not a Jordan ideal of \(R \). Also, one may verify that \(aR + Ra \) is a Jordan ideal of \(R \).

Lemma 2.1. Let \(R \) be a ring with unity and \(2R = R \). If \(J \) is the Jordan ideal of \(R \) and \(1 \in J \). Then \(J = R \).

Proof. Obviously \(J \subseteq R \). Let \(r \in R \) be any element. Since \(1 \in J \) and \(J \) is Jordan ideal of \(R \), \(1 \cdot r + r \cdot 1 \in J \). This gives \(2r \in J \). Hence \(r \in J \).

Lemma 2.2. If \(J \) is a Jordan ideal of \(R \) and \(b \in J \), then \([[x, y], b] \in J \), for all \(x, y \in R \).

Proof. Let \(b \in J \). Since \(J \) is Jordan, \(xb + bx \) and \(yb + by \in J \). Also, since \(J \) is an additive subgroup of \(R \),

\[
(bx + xb)y + y(bx + xb) \in J \quad \text{and} \quad (by + yb)x + x(by + yb) \in J.
\]

This gives \(b[x, y] - [x, y]b \in J \). Hence \([[x, y], b] \in J \).

3. \(R \)-Strong Jordan Ideals

Throughout this section by ring \(R \), we mean a prime ring.

Definition 3.1 ([1]). Let \(R \) be a prime ring. A Jordan ideal \(V \) of \(R \), is said to be \(R \)-strong Jordan ideal of \(R \), if \(avb \in V \), for all \(v \in V \) and for all \(a, b \in R \).

Towards the existence of \(R \)-strong Jordan ideals, we give the following example.
Example 3.2. (i) Let $R = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}$ and let $V = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{Z}, a \neq 0 \right\}$.

Then V is R-strong Jordan ideal of R. Indeed, let if $X = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \in R$ and $Y = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in V$, then

$XY + YX = \begin{pmatrix} xa + ax & 0 \\ 0 & 0 \end{pmatrix} \in V$

Also, $XYX = \begin{pmatrix} xax & 0 \\ 0 & 0 \end{pmatrix} \in V$.

Hence V is an R-strong Jordan ideal of R.

(ii) Let $R = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & d \\ 0 & f \end{pmatrix} \mid a, d, e, f \in \mathbb{Z} \right\}$ and $V = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{Z}, a \neq 0 \right\}$.

Then V is a R-strong Jordan ideal of R.

Note. R-strong Jordan ideal of R is a Jordan ideal of R.

Theorem 3.3. If V_1 and V_2 are two R-strong Jordan ideals of R, then $V_1 + V_2$ is also R-strong Jordan ideal of R.

Proof. Clearly $V_1 + V_2$ is a Jordan ideal of R. Let $x \in V_1 + V_2$ and $a, b \in R$. Then $x = y + z, y \in V_1, z \in V_2$. Since V_1 is R-strong Jordan ideal of R, for $y \in V_1$ and $a, b \in R, ayb \in V_1$. Similarly, $azb \in V_2$. Also, $axb = ayb + azb \in V_1 + V_2$.

Hence $V_1 + V_2$ is an R-strong Jordan ideal of R.

Theorem 3.4. Let $\left\{ V_t : t \in T, where T is an indexed set \right\}$ be a family of R-strong Jordan ideals of R. Then $\bigcap_{t \in T} V_t$ is an R-strong Jordan ideal of R.

Proof. Let $V = \bigcap_{t \in T} V_t$. Let $x \in V$ and $a, b \in R$. Since $x \in V, x \in V_t$, for all $t \in T$. Now $x \in V_t$ and V_t is R-strong Jordan ideal, therefore $axb \in V_t$, for all $t \in T$. Hence $axb \in \bigcap_{t \in T} V_t = V$.

Remark 3.5. Union of two R-strong Jordan ideals need not be an R-strong Jordan ideal. Indeed, if

$R = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}$, $V_1 = \left\{ \begin{pmatrix} 0 & 0 \\ a & b \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}$
and \(V_2 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\} \), then both \(V_1 \) and \(V_2 \) are \(R \)-strong Jordan ideals of \(R \). But \(V_1 \cup V_2 \) is not even a Jordan ideal of \(R \). Indeed,
\[
\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} xa & bx \\ ax & by \end{pmatrix} \notin V_1 \cup V_2.
\]

Regarding product of two \(R \)-strong Jordan ideals, we give the following result.

Theorem 3.6. Let \(R \) be a ring with unity. If \(V_1 \) and \(V_2 \) are \(R \)-strong Jordan ideals of \(R \), then \(V_1 V_2 \) is also an \(R \)-strong Jordan ideal of \(R \).

Proof. Note that
\[
V_1 V_2 = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in V_1, b_i \in V_2, n \in \mathbb{Z} \right\}
\]
clearly \(V_1 V_2 \) is a Jordan ideal of \(R \).

Let \(x \in V_1 V_2 \) and \(r \in R \). Then \(x = \sum_{i=1}^{n} a_i b_i, a_i \in V_1, b_i \in V_2 \). Now \(a_i \in V_1, r \in R \) and \(V_1 \) is \(R \)-strong Jordan ideal, therefore, \(ra_i r \in V_1 \). Similarly, \(rb_i r \in V_2, i = 1, 2, \ldots , n \).

Now
\[
(3.3.1) \sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} (ra_i r \cdot rb_i r) + \sum_{i=1}^{n} (ra_i - ra_i r)(b_i r + rb_i r)
\]
Since \(r_1 a, r_2 \in V_1 \), for all \(r_1, r_2 \in R \) and \(i = 1, 2, \ldots , n \). Taking \(r_1 = r - 1, r_2 = r \), we get \((ra_i r - a_i r) \in V_1, i = 1, 2, \ldots , n \). Similarly \(b_i r + rb_i r \in V_2 \).

Thus (3.1) gives, \(r(\sum_{i=1}^{n} a_i b_i) r \in V_1 V_2 \).

Lemma 3.7. Let \(V \) be an \(R \)-strong Jordan ideal of \(R \), where \(R \) is a ring with unity. If \(v \in V \) and \(a, b \in R \), then \(avb + vba \in V \).

Proof. Let \(avb \) and \(b av \in V \). Then
\[
(3.3.2) (v+a)(v+b) \in V
\]
Now since \(V \) is a Jordan ideal, \(a(\underbrace{avb + bav}_V + (avb + vba)a \in V \). Therefore, by (3.2), \(avba + abva \in V \). Replacing \(a \) by \((a - 1) \), we get
\[
(\underbrace{avb - vba}_V + (abv - bv)(a - 1) \in V
\]
This gives \(-vba - abv \in V \). Hence \(vba + abv \in V \).

Let \(V \) be a \(R \)-strong Jordan ideal of \(R \). If \(a, b \in R \), we associate \(V \) with the set \(A_V = \{ b \in R : ab + ba \in V, \text{ for all } a \in R \} \)
Theorem 3.8. If V is an R-strong Jordan ideal of R, then AV is an R-strong Jordan ideal of R.

Proof. Let $x \in AV$ and $r \in R$. Since $x \in AV, xr + rx \in V$. Also, since V is a Jordan ideal of R, $(xr + rx)y + y(xr + rx) \in V$.

This gives $xr + rx \in AV$. Hence AV is a Jordan ideal of R.

Let $b \in BJ, x, y \in R$. Since $b \in BJ, x, y \in R, xb + bx, yb + by \in V$. Since V is an R-strong Jordan ideal, $(yb + yb)y \in V$. This implies that

$y^2by \in V$.

Similarly, $x(by + yb)y \in V$ and $y(by + yb)x \in V$. This gives $xb + yby \in V$ and $ybyx + y^2bx \in V$.

Hence, by (3.3) $x(by + yb) + (by)x \in V$. Hence AV is R-strong.

Theorem 3.9. If R is a ring with $2R = R$ and V is an R-strong Jordan ideal of R, then $AV \cap V$ is a non-zero right ideal of R.

Proof. Note that $AV \cap V \neq (0)$. Let $b \in AV \cap V, x, y \in R$. Then $bx + xb \in V$. So, $bx + xb \in AV$. Hence $bx + xb \in AV \cap V$. Now

$x + bx = xb + bx + xb - xb$
$= bx - xb + 2xb$
$= bx - xb + xb$ (::* $2R = R$)
$= bx \in AV \cap V$

Since $x \in R$ is arbitrary, $bx \in AV \cap V$, for all $x \in R$. Hence $AV \cap V$ is a non-zero right ideal of R.

Theorem 3.10. If e is an idempotent and V is a Jordan ideal of R, then eVe is an eRe-strong Jordan ideal of R.

Proof. Let $x \in eVe$ and $r \in eRe$. Then

$x + rx = e(vr_1 + r_1v), \ v \in V, r_1 \in R$
$\in eVe$ (::* $r_1e = r_1 = er_1$)

Again, let $u \in eVe$ and $x, y \in eRe$. Then

$xuy = e(xvy)e \in eVe$.

References

Received: March, 2009