The c–Supplemented Subgroups and p-Nilpotency of Finite Groups

Shitian Liu

School of Science
Sichuan University of Science & Engineering
Zigong 643000, P.R. China
liust@suse.edu.cn

Abstract

The key of this paper is to determine the p-nilpotence of finite groups under assumption that some subgroups of Sylow subgroups of G are c–supplemented.

Mathematics Subject Classification: 20D10, 20D20

Keywords: Sylow subgroups, c-supplemented subgroups, p-nilpotent

1 Introduction

In this paper, all groups are finite. A well-known theorem of Burnside (10.1.8 of [1]) asserts that if some prime p a Sylow p–subgroup P of a finite group G lies in the center of its normalizer, then G is p-nilpotent. Another well-known result due to Frobenius(10.3.2 of [1]) shows that a finite group G is p-nilpotent iff every p-subgroup if centralized by the p'-elements in its normalizer. Thompson [2] improved the result of Frobenius.Zhang [3] furthered the results of Thompson. Some notions and notations, we refer to [1].

2 Some Lemmas

Lemma 2.1 (Lemma 2.1 of [4]). Let G be a group. Then
(1) If H is c-supplemented in G, $H \leq M \leq G$, then H is c-supplemented in M.

(2) Let $N \triangleleft G$ and $N \leq H$. Then H is c-supplemented in G iff H/N is c-supplemented in G/N.

(3) Let π be a set of primes. Let N be a normal π'-subgroup and let H be a π-subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented in G/N. If further N normalizes H, then converse also holds.

(4) Let $H \leq G$ and $L \leq \Phi(H)$. If L is c-supplemented in G, then $L \leq \Phi(G)$ and $L \leq \Phi(G)$.

Lemma 2.2. Let G be a group and p a prime number.

(1) If P is a minimal normal p-subgroup of G, and $x \in P$ is $c-$supplemented in G, then $P = \langle x \rangle$.

(2) Let P be a normal p-subgroup of G and x be an element of $P - \Phi(P)$. If $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$ and x is c-supplemented in G, then $P = \langle x \rangle$.

Proof. (1) Since $\langle x \rangle$ is $c-$supplemented in G, then there exists a subgroup K such that $G = \langle x \rangle K$ and $\langle x \rangle \cap K \leq \langle x \rangle_G$. Let $P_1 = P \cap K$. Since P is a minimal normal subgroup of G, then P is either trivial or P. If $P_1 = 1$, then $P = P \cap G = \langle x \rangle (P \cap K) = \langle x \rangle$. Other $P_1 = P$ and hence $P \leq K, \langle x \rangle = \langle x \rangle \cap K \leq \langle x \rangle_G$. So $\langle x \rangle$ is a normal subgroup of G and hence $P = \langle x \rangle$.

(2) Since $\langle x \rangle$ is $c-$supplemented in G, then there exists a subgroup K such that $G = \langle x \rangle K$ and $\langle x \rangle \cap K \leq \langle x \rangle_G$. Let $P_1 = P \cap K$. Hence $P_1 \triangleleft G$ and $P_1 \Phi(P)/\Phi(P)$ is normal in $G/\Phi(P)$. Since $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$, $P_1 \Phi(P)/\Phi(P)$ is either trivial or $P/\Phi(P)$. If the former, then $P_1 \leq \Phi(P), P = P \cap G = \langle x \rangle (P \cap K) = \langle x \rangle \Phi(P) = \langle x \rangle$. Other $P_1 = P$ and hence $P \leq K, \langle x \rangle = \langle x \rangle \cap K \leq \langle x \rangle_G$. So $\langle x \rangle$ is a normal subgroup of G and since x is an non-identity of $P - \Phi(P)$, then $P = \langle x \rangle$. □

3 Main Results

Theorem 3.1. Let P be a Sylow p-subgroup of G, where p is a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. Then G has a normal p-complement iff every cyclic subgroup of $P \cap O^p(G)$ with order p or 4 (if $p = 2$) is c-supplemented in G.
\textbf{Proof.} (i). First every cyclic subgroup of \(P \cap O^p(G) \) with order \(p \) or 4 (if \(p = 2 \)) is \(c \)-supplemented in \(G \). Suppose that the theorem is false and let \(G \) ba a counterexample with minimal order. Then we have the following situation:

(1) Let \(M \) be a proper subgroups of \(G \), then \(M \) is \(p \)-nilpotent.

Since \(P \) is a Sylow \(p \)-subgroup of \(G \), then \(P \cap M \) is a Sylow \(p \)-subgroup of \(M = G \cap M \). And since \(P \cap O^p(G) \cap M \leq (P \cap M) \cap (O^p(G) \cap M) \leq (P \cap M) \cap (O^p(M)) \leq P \cap O^p(G) \), then by hypotheses and lemma 2.1(1), we have that every cyclic subgroup of \((P \cap M) \cap O^p(M)\) with order \(p \) or 4 (if \(p = 2 \)) is \(c \)-supplemented in \(M \). Then \(M, (P \cap M) \cap O^p(M) \) satisfies the hypotheses. So by the minimal choice of \(G \), we have \(M \) is \(p \)-nilpotent. So \(G \) is not \(p \)-nilpotent but every proper subgroups of \(G \) is \(p \)-nilpotent. Then, by IV, 5.4 and III, 5.2(1) of [6], we have that \(G = PQ \), where \(P \) is a normal Sylow \(p \)-subgroup of \(G \), \(Q \) is a cyclic Sylow \(q \)-subgroup of \(G \) and \(Q \) is not normal in \(G \).

(2) Let \(L \) be a minimal normal subgroups of \(G \), then \(G/L \) is \(p \)-nilpotent.

Since \(P \) is a Sylow \(p \)-subgroup of \(G \), then \(PL/L \) is a Sylow \(p \)-subgroup of \(G/L \). And \((PL/L) \cap O^p(G)L/L = (P \cap O^p(G))L/L \), then by hypothesis and lemma 2.1(2) and lemma 2.1(3), we have every cyclic subgroup of \((P \cap O^p(G))L/L\) of order \(p \) or 4 is \(c \)-supplemented in \(G/L \). Thus by the minimal choice of \(G \), we have \(G/L \) is \(p \)-nilpotent.

(3) \(G/L \cap P \) is \(p \)-nilpotent.

By (1) and (2) and 2.6 of [7], we have \(G/P \cap L \leq G/P \times G/L \) is \(p \)-nilpotent.

(4) If \(\Phi(P) \neq 1 \) and \(L = P \).

If \(\Phi(P) = 1 \), then \(P \) is an abelian normal Sylow \(p \)-subgroup of \(G \), then \(P \leq Z(G) \), \(G \) is \(p \)-nilpotent, a contradiction. So we have \(\Phi(P) \neq 1 \).

If \(L \leq \Phi(P) \). Since \(P \triangleleft G \), \(\Phi(P) \leq \Phi(G) \). By (3), \(G/\Phi(P) \) is \(p \)-nilpotent, then \(G/\Phi(G) \) is \(p \)-nilpotent and so is \(G \), a contradiction. So \(L/\Phi(P) \) is a minimal normal \(p \)-subgroup of \(G/\Phi(P) \), this contradicts III, 5.2(2) of [6], then \(L = P \).

(5) To complete the proof.

By (4) and since \(P \) is a minimal normal Sylow \(p \)-subgroup of \(G \), then \(P =< x > \) by lemma 2.2 and III, 5.2(3)(4) of [6]. By lemma 2.8 of [5], we have \(P \leq Z(G) \). So \(G \) is \(p \)-nilpotent.

(ii). Second \(G \) is \(p \)-nilpotent. Then \(O^p(G) \) is a normal Hall \(p' \)-subgroup of \(G \), then \(P \cap O^p(G) = 1 \), so the necessary condition holds. □

\textbf{Theorem 3.2}. Let \(P \) be a Sylow \(p \)-subgroup of \(G \), where \(p \) is a prime divisor
of $|G|$ with that minimal subgroups of P is in $Z_\infty(G)$. Then G has a normal p-complement if and only if every cyclic subgroup of $P \cap O^p(G)$ with order 4 $(p = 2)$ is c-supplemented in G.

Proof. If p is odd. If G is p-nilpotent, then the minimal subgroup of P is obvious in $Z_\infty(G)$. If every minimal subgroup of P is in $Z_\infty(G)$, so G is $p-$nilpotent by lemma 1.1 of [8]. Then we only think $p = 2$.

If G is 2-nilpotent, then by theorem 1.1, we have every cyclic subgroup of $P \cap O^2(G)$ with order 4 is c-supplemented in G.

Then we suppose that every cyclic subgroup of $P \cap O^2(G)$ with order 4 $(p = 2)$ is c-supplemented in G. And suppose that the result is false, so we chose G as a minimal counterexample. We will prove it in the following steps:

(1) Every proper subgroup of G is 2-nilpotent.

Let M be a proper subgroup of G. Let P be a Sylow 2-subgroup of G, then $P \cap M$ is a Sylow 2-subgroup of $M = G \cap M$. Since $Z_\infty(G) \cap M \leq Z_\infty(M)$, then minimal subgroup of $P \cap M$ is in $Z_\infty(M)$. And since $P \cap O^2(G) \cap M \leq (P \cap M) \cap (O^2(G) \cap M) \leq (P \cap M) \cap (O^2(M)) \leq P \cap O^2(G)$, then the hypotheses and lemma 2.1(1) implies that every cyclic subgroup of $(P \cap M) \cap O^2(M)$ with order 4 is c-supplemented in M. Then $M, (P \cap M) \cap O^2(M)$ satisfies the hypotheses. The minimal choice of G implies that M is 2-nilpotent. So G is not 2-nilpotent but every proper subgroups of G is 2-nilpotent. Then by IV, 5.4 and III, 5.2(1) of [6], we have that $G = PQ$, where P is a normal Sylow 2-subgroup of G, Q is a cyclic Sylow q-subgroup of G, $q \neq 2$ and Q is not normal in G.

(2) $\Phi(P) \neq 1$

If $\Phi(P) = 1$, then P is an abelian normal Sylow 2-subgroup of G, then $P \leq Z(G)$, then G is 2-nilpotent, a contradiction. So we have $\Phi(P) \neq 1$.

(3) Let L be a minimal normal subgroup of G, then G/L is p-nilpotent, L is 2-subgroup, and so $L = P$.

Since P is a Sylow 2-subgroup of G, then PL/L is a Sylow 2-subgroup of G/L. And $(PL/L) \cap O^2(G)L/L = (P \cap O^2(G))/L$, then by hypothesis and lemma 2.1(2)(3), we have every cyclic subgroup of $(P \cap O^2(G))/L$ of order 4 is $c-$supplemented in G/L. Thus by the minimal choice of G, G/L is 2-nilpotent. Also L is a 2-group. Then $L \leq P$. If $L < P$. Since P is a Sylow 2-subgroup of G, then P/L is a Sylow 2-subgroup of G/L. And $(P/L) \cap O^2(G)L/L = (P \cap O^2(G))/L$, then by hypothesis and lemma 2.1(2)(3), we have every cyclic subgroup of $(P \cap O^2(G))/L$ of order 4 is c-supplemented in G/L. Thus
by the minimal choice of G, we have G/L is 2-nilpotent. If $L \leq \Phi(P)$. Since $P \triangleleft G$, then $\Phi(P) \leq \Phi(G)$, then $G/\Phi(G)$ is 2-nilpotent, and so G is 2-nilpotent, a contradiction. So $L/\Phi(P)$ is a minimal normal 2-subgroup of $G/\Phi(P)$, this contradicts III, 5.2(2) of [6], then $L = P$.

(4) To complete the proof.

by (3) P is minimal normal 2-subgroup of G. Then if $\Phi(P) < P$, $P/\Phi(P)$ is a minimal normal 2-subgroup of $G/\Phi(P)$. Since $(P/\Phi(P)) \cap O^2(G)\Phi(P)/\Phi(P) = (P \cap O^2(G))\Phi(P)$, so by lemma 2.1(2)(3), we have that every cyclic subgroup of $(P \cap O^2(G))/\Phi(P)$ of order 4 is c-supplemented in G, then by the minimal choice of G, $G/\Phi(P)$ is 2-nilpotent, and so $G/\Phi(G)$ is 2-nilpotent as $\Phi(P) \leq \Phi(G)$. Thus G is 2-nilpotent, a contradiction. If $P = \Phi(P)$, then by (1) $G/\Phi(P) = G/P \cong Q$ is nilpotent, then $G/\Phi(G)$ is nilpotent and so G is nilpotent, a contradiction. □

Corollary 3.1. Let G be a group and p the smallest prime divisor of $|G|$. If every minimal subgroup of Sylow p-subgroups of G of order p or 4 (if $p = 2$) is c-supplemented in G, then G is p-nilpotent.

Acknowledgments The object is partially supported by the Scientific Research Fund of School of Science of SUSE. The author is very grateful for the helpful suggestions of the referee.

References

Received: March, 2009