On \mathcal{A}-Quasi-Projective Modules and \mathcal{A}-Semiperfect Modules

Yunjae Kim
Department of Mathematics
Kyungpook National University
Sankyuk-dong, Daegu, Korea

gysohn@knu.ac.kr

Gyoyong Sohn
Department of Industrial and Applied Mathematics
Kyungpook National University
Sankyuk-dong, Daegu, Korea

Abstract

If M is \mathcal{A}-quasi-projective with (C_6) for \mathcal{A}, then A is \mathcal{A}-semi perfect. K. Oshiro defined the notion dual to the extending property of modules for \mathcal{A} in [3]. This dualization leads us to the dualizations of continuous modules and quasi-continuous modules. These are the semiperfect modules and quasi-semiperfect modules. We revisit his paper [3] and give some different proofs from Oshiro which are more simpler and easier than [3].

Mathematics Subject Classification: 13C10

Keywords: \mathcal{A}-quasi-projective module, \mathcal{A}-semiperfect module

1 Introduction and Preliminaries

Throughout this note, R is an associative ring with unit, and M is an unitary right R-module. Let \mathcal{A} be a subfamily of the family $\mathcal{L}(M)$ of all submodules of M satisfying some condition [3], [4]. M is said to have the extending property of modules for \mathcal{A} provided that, for any $A \in \mathcal{A}$, there exists a summand A^* of M which contains A as an essential submodule, i.e., $\forall A \in \mathcal{A}, \exists A^* \prec M \ni A \leq A^*$. For the dual of the extending property, Oshiro defined the concepts co-essential extension and co-closed submodule in M which correspond to essential...
extension and closed submodule in M, respectively. A submodule A of M is essential if and only if the image of the inclusion map $i : A \to M$ is large in M. Thus the following definition is quite natural!

Definition 1.1. [3] Let $N_1 \leq N_2 \leq M$. We say N_1 is a co-essential submodule of N_2 in M ($N_1 \trianglelefteq c N_2$ in M) if the kernel of the canonical map $M/N_1 \to M/N_2 \to 0$ is small in M/N_1.

$N_1 \trianglelefteq c N_2$ in M if and only if $N_2 + X = M$ implies $N_1 + X = M$. N is a co-closed submodule in M if $N' \trianglelefteq c N$ in M implies $N = N'$. Any summand is co-closed. If $N_0 \leq N_1 \leq N_2 \leq M$ then $N_0 \trianglelefteq c N_2$ if and only if $N_0 \trianglelefteq c N_1$ and $N_1 \trianglelefteq c N_2$. If $f : P \to M$ is a homomorphism and $B \trianglelefteq c A$ in P then $f(B) \subseteq c f(A)$ in M. In fact, $\tilde{f} : P/B \to M/f(B)$ is a homomorphism and $A/B \ll P/B$, so $f(A)/f(B) \ll M/f(B)$ therefore $f(B) \subseteq c f(A)$ in M. Moreover, if f is an epimorphism and $B \trianglelefteq c A$ in M then $f^{-1}(B) \subseteq c f^{-1}(A)$ in P. Indeed, if $f^{-1}(A) + X = P$ then $f(f^{-1}(A) + X) = A + f(X) = M$, so $B + f(X) = M$ thus $f^{-1}(B + f(X)) = f^{-1}(B) + X = P$.

Lemma 1.2. [3] Let $M = N^* \bigoplus N^{**}$ with $N^* \leq N \leq M$. The followings are equivalent:

(1) $N^* \trianglelefteq c N$ in M.

(2) $N \cap N^{**} \ll M$ (i.e., $N \cap N^{**}$ is small in M).

(3) $N \cap N^{**} \ll N^{**}$.

Proof. (1)\iff(2) see [3].

(2)\iff(3) It is immediate from the fact $N^{**} <^{\oplus} M$. \square

Definition 1.3. Let N and N' be submodules of M. N' is said to be a supplement of N in M if $M = N + N'$ but $M \neq N + X$ for every $X \leq N'$.

Note that N' is a supplement of N in M if and only if $M = N + N'$ and $N \cap N' \ll N'$. Thus the previous lemma says that $N^* \trianglelefteq c N$ in M if and only if N^{**} is a supplement of N in M. If N is a supplement for some submodule in M then M is co-closed. Conversely, if N has a supplement N' and N is co-closed, then N is a supplement of N' (Proposition 1.2 in [3]). First, we reprove Theorem 1.3 of [3].

2 The main results

Proposition 2.1. Let $N \leq M$. If M and M/N have projective covers then there exists a co-closed submodule N^* of M with $N^* \trianglelefteq c N$ in M.
Proof. Let \(f : P \to M, Q \to M/N \) be the projective covers and let \(\eta \circ f : P \to M \to M/N \), where \(\eta \) is the canonical epimorphism. Thus we have:
\[P = P_1 \oplus P_2, P_1 \cong Q, P_2 \subset f^{-1}(N) \text{ and } P_1 \cap f^{-1}(N) \ll P_1 \] (see [1]).
So by the Lemma 1.4 of \([?]\), \(P_2 \leq_c f^{-1}(N) \) in \(P \). Hence \(f(P_2) \leq_c N \) by the previous remarks. We claim that \(f(P_2) \) is co-closed. Indeed, suppose \(K \leq_c f(P_2) \) in \(M \), then by the minimality of the projective cover, \(f^{-1}(K) \cap P_2 \leq_c P_2 \), so \(P_2 \subset f^{-1}(K) \), that is, \(K = f(P_2) \).

\[\square \]

Corollary 2.2. If \(M \) and \(M/N \) have projective covers, then there exists a decomposition of \(M \) as co-closed submodules which are supplement of each other: \(M = M_1 + M_2, M_1 \cap M_2 \ll M_i, i = 1, 2 \) and \(M_2 \leq c N \).

Proof. Under the same notations as Proposition 2.1, we put \(M_1 = f(P_1), M_2 = f(P_2) \). The Proposition says that \(M_2 \leq c N \) and \(M_2 \) is co-closed. It suffices to show that \(f(P_1) \) is a supplement of \(N \), and hence \(f(P_1) \) is a supplement of \(f(P_2) \). If \(f(I) + N = M, I \leq P_1 \), then \(f^{-1}(f(I) + N) = I + f^{-1}(N) = P \). Since \(P_2 \leq_c f^{-1}(N) \), \(I \oplus P_2 = P \). Hence \(I = P_1 \), so \(f(I) = f(P_1) \).

Which modules have such a decomposition as above? : \(\forall A \leq M, \exists M_1, M_2 \) submodules of \(M \ni M = M_1 + M_2, M_2 \leq c A \) in \(M \) and \(M_1 \cap M_2 \ll M_i, i = 1, 2 \). Semiperfect modules have such a decomposition[3]. Moreover, if every submodule of \(M \) has a co-closed submodule which is co-essential in \(M \) and if \(M \) is \(H \)-supplemented (i.e., \(\forall A \leq M, \exists A' \leq c M \ni A + X = M \text{ iff } A' + X = M \)) then \(M \) has above decomposition : Let \(A \leq M \). Then \(\exists A' \leq c M \ni A = A' \oplus B \) for some \(B \leq M \) and \(A + X = M \Leftrightarrow A' + X = M \). So \(M = A + B \) and \(B \) is a supplement of \(A \), i.e. \(A \cap B \ll B \). By hypothesis \(A \) has co-closed submodule \(C \) which is co-essential in \(M \). Then \(M = C + B, C \leq c A \) and \(C \cap B \ll C \) as required. Now when is the composition direct? Semiperfect modules satisfy this. Oshiro defined the lifting property of modules for \(A \) as the dual concept of the extending property as follows; \(M \) has the lifting property of modules for \(\mathcal{A} \) provided that, for any \(A \in \mathcal{A} \), there exists a direct summand \(A^* \leq c M \) such that \(A^* \leq c A \) in \(M \). The following lemma plays an important role in this paper.

Lemma 2.3. Suppose \(M = M_1 + M_2, M_1 \cap M_2 \ll M_i, i = 1, 2 \). The followings are equivalent :

1. \(M = M_1 \oplus M_2 \).
2. \(\exists g : M \to M_1 \ni \text{Im}(1_M - g) \subset M_2 \).

Proof. Since \(M_1 \cap M_2 \ll M_1, g \) is epimorphism, and since \(0 \leq c M_1 \cap M_2 \) in \(M_1, g^{-1}(0) \leq c g^{-1}(M_1 \cap M_2) = M_2 \) in \(M \). Now \(M_2 \) is co-closed in \(M \), so \(g^{-1}(0) \) must be equal to \(M_2 \). Finally, \(M_2 = g^{-1}(0) = g^{-1}(M_1 \cap M_2) \), therefore \(g(M_2) = 0 = M_1 \cap M_2 \).

\[\square \]
In [3], Oshiro introduced the concepts of A-semiperfect modules, A-quasi-semiperfect modules and A-quasi-projective modules as notions dual to those of A-continuous modules, A-quasi-continuous modules and A-quasi-injective modules, respectively.

Definition 2.4. [3] M is A-semiperfect (respectively, A-quasi-semiperfect) if the conditions (C_1) and (C_2) (respectively, (C_1) and (C_3)) below are satisfied;

(C_1) M has the lifting property for A.

(C_2) For any $A \in A$ such that $A \vartriangleleft M$, any sequence $M \rightarrow M/A \rightarrow 0$ splits.

(C_3) Let $A \in A$ and $N \in L(M)$ which are summands of M. If $X = A \cap N$ is small in M and $(A/X \bigoplus N/X) \vartriangleleft M/X$, then $X = 0$.

In particular, we simply say that M is semi-perfect (respectively, quasi-semiperfect) when it is $L(M)$-semiperfect (respectively, $L(M)$-quasi-semiperfect).

Definition 2.5. [3] M is A-quasi-projective if it satisfies the condition:

(C_4) For any $A \in A$, $N \in L(M)$ and any sequence $N \rightarrow M/A \rightarrow 0$, there exists a homomorphism $h : M \rightarrow N$ which makes the diagram commute

\[
\begin{align*}
M & \xrightarrow{\eta} M/A \xrightarrow{h} N \xrightarrow{\varphi} 0 \\
M/A & \xrightarrow{\text{can}} N \xrightarrow{0} 0
\end{align*}
\]

where η is the canonical map.

We have “projective \Rightarrow quasi-projective $\not\Rightarrow$ semipect \Rightarrow quasi-semiperfect $\Rightarrow (C_1)$ ” (see [2]).

(C_1) implies (C_6) : $\forall A \in A, \exists N \vartriangleleft M \ni M = N + A$ and $N \cap A \ll M$.

Clearly (C_4) implies (C_2). Now we prove Theorem 2.1 of [3] again. It is exactly different and obvious method. Oshiro showed this by a slight modification of the proof of Wu-Jans [5]. That is too long.

Proposition 2.6. Assume that M and M/A have projective covers for all $A \in A$. Then if M is A-quasi-projective, then it is A-semiperfect.

Proof. Claim (C_1) : Let $A \in A$. Then by the Corollary of the Proposition 2.1, M has a decomposition $M = M_1 + M_2 \ni M_1 \cap M_2 \ll M_i, i=1,2$ and $M_2 \ll A$ in M. Since $M_2 \ll A$, $M_2 \in A$ by the condition (β) of A. So the quasi-projectivity implies the existence of a homomorphism $g : M \rightarrow M_1$ such
On A-quasi-projective modules and A-semiperfect modules

that

\[
\begin{array}{ccc}
M & \xrightarrow{\eta} & M/M_2 \\
\downarrow g & & \downarrow 0 \\
M_1 & \xrightarrow{\eta|_{M_1}} & 0
\end{array}
\]

where η is the canonical map.

Then $m - g(m) \in M_2$ for every $m \in M$, that is, $(1_M - g)M \subset M_2$. Hence by applying the Lemma 2.3 we have $M = M_1 \bigoplus M_2$ and $M_2 \leq_c A$ in M. \hfill \Box

Theorem 2.12 of [3] is trivial. Theorem 3.18 of [3] says that if M is a quasi-projective R-module satisfying (C_6) for $\mathcal{L}(M)$ then it is semiperfect. We generalize this theorem for A and it’s proof is simple.

Theorem 2.7. If M is A-quasi-projective with (C_6) for A then M is A-semiperfect.

Proof. Let A be in A then by (C_6), $\exists\ N <^\oplus M \ni M = N + A$ and $N \cap A \ll M$. "say" $M = N \bigoplus B$. By (C_4) there exists a homomorphism $g : M \rightarrow N$ such that

\[
\begin{array}{ccc}
M & \xrightarrow{\eta} & M/A \\
\downarrow g & & \downarrow 0 \\
N & \xrightarrow{\eta|_N} & 0
\end{array}
\]

where η is the canonical map. so $(1_M - g)M \subset A$. Applying the proof of Lemma 2.3, we have $M = N + g^{-1}(0)$ and $g^{-1}(0) \leq_c A$ in M. $M/g^{-1}(0) \cong N \cong M/B$, hence by (α) and (β) for A, $B \in A$. If $g^{-1}(0) <^\oplus M$ then $g^{-1}(0)$ is co-closed in M, and hence $M = N + g^{-1}(0)$, $N \cap g^{-1}(0) \ll N$ and $N \cap g^{-1}(0) \ll g^{-1}(0)$. Again, applying Lemma 2.3, we obtain : $M = N \bigoplus g^{-1}(0)$ and $g^{-1}(0) \leq_c A$. For the completeness of the proof we must claim that $g^{-1}(0) <^\oplus M$. Consider $h \circ \eta : M \rightarrow N$ where $\eta : M \rightarrow M/g^{-1}(0)$ is the canonical epimorphism and $h : M/g^{-1}(0) \rightarrow N$ is an isomorphism. (C_4) implies (C_2), therefore the map $q \circ h \circ \eta : M \rightarrow M/B \rightarrow 0$ splits by, say, $f : M/B \rightarrow M$, where $q : N \rightarrow M/B$ is an isomorphism. Hence $M = \text{Im}(f) \bigoplus \ker(q \circ h \circ \eta) = \text{Im}(f) \bigoplus g^{-1}(0)$ as required \hfill \Box

In particular, any quasi-projective module with (C_6) for $\mathcal{L}(M)$ is written as a direct sum of hollow modules[3]. A module M is called supplemented if for any submodules A and B with $A + B = M$, B contains a supplement of
A. Using Lemma 2.3, we can also show that if M is \mathcal{A}-quasi-projective and supplemented then it is \mathcal{A}-semiperfect.

References

Received: December 11, 2007