\textbf{Abstract.} We prove that $SL_n(F_q)$ is equal to its own commutator group except when $n = 2$ and $q = 2$ or $q = 3$, by using the fact that every element in the center Z of $SL_n(F_q)$ can be written in a commutator form $[A, B]$, where $A, B \in SL_n(F_q)$.

\textbf{Mathematics Subject Classification:} Primary 20H20, 15A04

\textbf{Keywords:} Central extension, Commutator group, General group, Projective special linear group, Special linear group

\section*{INTRODUCTION}

\textbf{Definition 1.1.} A group extension

$$F \xrightarrow{i} E \xrightarrow{j} G$$

of a group G by a group F consists of a group E, an injective homomorphism $i : F \to E$, and a surjective homomorphism $j : E \to G$, such that $\text{Im} i = \text{Ker} j$.

Group extensions need only be constructed up to isomorphism. In detail, an equivalence of group extensions

$$F \xrightarrow{i} E \xrightarrow{j} G$$

$$F \xrightarrow{i'} E' \xrightarrow{j'} G$$

of G by F is an isomorphism $\theta : E \to E'$ such that the diagram

$$F \xrightarrow{i} E \xrightarrow{j} G$$

$$\| \quad \| \quad \|$$

$$F \xrightarrow{i'} E' \xrightarrow{j'} G$$

commutes, that is, $\theta \circ i = i'$ and $j' \circ \theta = j$.
Definition 1.2. An extension

\[F \overset{i}{\rightarrow} E \overset{j}{\rightarrow} G \]

is called central if the image \(i(F) \) is contained in the center of \(E \). This is possible only if \(F \) is Abelian.

Definition 1.3. An element \(\zeta \) of a field \(F \) is said to be a root of unity if there exists an integer \(n > 0 \) such that \(\zeta^n = 1 \); for every integer \(n > 0 \) such that \(\zeta^n = 1 \), \(\zeta \) is called an \(n \)-th root of unity.

It amounts to say that the roots of unity are the elements of finite order of the multiplicative group \(F^* \) of non-zero elements of \(F \). The roots of unity form a subgroup \(\mu_\infty(F) \) of \(F^* \), the \(n \)-th roots form a subgroup \(\mu_n(F) \) of \(\mu_\infty(F) \). We have \(\mu_\infty(F) = \bigcup_{n \geq 1} \mu_n(F) \) and \(\mu_n(F) \subset \mu_m(F) \) if \(m \) divides \(n \). For every root of unity \(\zeta \) there exists a least integer \(n \geq 1 \) such that \(\zeta \) belongs to \(\mu_n(F) \), namely the order of \(\zeta \) in the group \(F^* \).

Definition 1.4. An \(n \)-th root of unity is said to be primitive if it is of order \(n \).

If there exists a primitive \(n \)-th root of unity \(\zeta \) in \(F \), the group \(\mu_n(F) \) is of order \(n \) and is generated by \(\zeta \).

Let \(F \) be a field and \(n \) be a positive integer. We denote by \(M_n(F) \) the ring of square matrices of order \(n \) over \(F \). By an \(n \times n \) determinant we shall mean a mapping

\[\det : M_n(F) \rightarrow F \]

which, when viewed as a function of the column vectors \(A^1, \ldots, A^n \) of a matrix \(A \), is multilinear alternating, and such that \(\det(I) = 1 \). It is shown that if determinants exist, they are unique. If \(A^1, \ldots, A^n \) are the column vectors of dimension \(n \), of the matrix \(A = (a_{ij}) \), then

\[\det(A^1, \ldots, A^n) = \sum_{\sigma} \epsilon(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(n),n} \]

where the sum is taken over all permutations \(\sigma \) of \(\{1, \ldots, n\} \), and \(\epsilon(\sigma) \) is the sign of the permutation.

The general linear group \(\text{GL}_n(F) \) of invertible elements of \(M_n(F) \) is just the inverse image under the mapping \(\det : M_n(F) \rightarrow F \) of the multiplicative group \(F^* \) of invertible elements of \(F \). The mapping \(\det : M_n(F) \rightarrow F \) is moreover surjective and therefore so is the homomorphism \(\det : \text{GL}_n(F) \rightarrow F^* \), since for all \(\lambda \in F \),

\[\det(\text{diag}(\lambda, 1, \ldots, 1)) = \lambda. \]
The kernel of the surjective homomorphism $\text{det} : \text{GL}_n(F) \to F^*$ is a normal subgroup of $\text{GL}_n(F)$; it is denoted by $\text{SL}_n(F)$ and is called the **special linear group** of square matrices of order n over F.

We note that if a matrix M commutes with every element of $\text{SL}_n(F)$, then it must be a scalar matrix. Indeed, just the commutation with elementary matrices

$$E_{ij}(1) = I_n + 1_{ij}$$

show that M commutes with all matrices 1_{ij} (having 1 in the ij-component, 0 otherwise), so M commutes with all matrices, and is a scalar matrix. Taking the determinant shows that the center consists of $\mu_n(F)I_n$.

Definition 1.5. Let Z be the center of $\text{SL}_n(F)$, that is the group of scalar matrices such that the scalar is an n-th root of unity. We define the **projective special linear group** of square matrices of order n over F by the quotient group

$$\text{PSL}_n(F) = \text{SL}_n(F)/Z.$$

2. **The group $\text{SL}_n(F)$ as a central extension**

Let F be a field and let μ be a primitive p^n-th root of unity in F.

Note that $\text{SL}_n(F)$ is a central group extension of $\text{PSL}_n(F)$ by $\mu_n(F)$. Indeed, we have the central extension

$$\mu_n(F) \xrightarrow{i} \text{SL}_n(F) \xrightarrow{j} \text{PSL}_n(F)$$

where i is the injective homomorphism defined by $i(\mu) = \mu I_n$, j is the surjective homomorphism defined by $j(A) = \bar{A}$, and $\text{Im} i = \text{Ker} j$.

Theorem 2.1. Let n be divisible by p^n where p is prime. Then the scalar matrix μI_n can be written in a commutator form $[A, B] = ABA^{-1}B^{-1}$, where $A, B \in \text{SL}_n(F)$.

Proof. We have the following possibilities:

1. Let p be an odd prime and A, B be two square matrices of order p^m over the field F such that $A = (a_{i,j}) = (\delta_{i,j}\mu^{i-1})$, and $B = (b_{i,j})$ with $b_{i+1,i} = b_{1,p^m} = 1$, and $b_{i,j} = 0$ otherwise. Then A and B belong to $\text{SL}_{p^m}(F)$, and $[A, B] = ABA^{-1}B^{-1} = \mu I_{p^m}$.

2. If $p = 2$ and $n = 1$, then the matrices $A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, where $a^2 + b^2 = -1$, and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ satisfy the required condition. Indeed, $[A, B] = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. For a finite field F_q, with q odd, such a and b always exist. If $F = F_q$ and $q = 4k + 1$ then -1 is a square and we can take $a = i$, where $i^2 = -1$, and $b = 0$. If $q = 4k+3$ then the set of all elements of the form x^2+y^2 coincides with F_q. Indeed, it contains all
quadratic residues x^2, and it is invariant under the multiplication by an arbitrary element z^2, where $z \in F_q$. Therefore, if it contains at least one non-quadratic element, then it coincides with F_q. If not, then quadratic residues form an additive subgroup in F_q. However, F_q does not have an additive subgroup of index 2 for odd q. Therefore, F_q is the set of elements of the form $x^2 + y^2$. In particular, there are a and b such that $a^2 + b^2 = -1$, and they provide entries for A.

3. If $p = 2$ and $m > 1$, we select $A = \sigma_1 X$ and $B = Y \sigma_2$ where X and Y are diagonal matrices and σ_1, σ_2 are commuting permutation matrices.

In this case

$$[A, B] = ABA^{-1}B^{-1} = \sigma_1 XY \sigma_2 X^{-1} \sigma_1^{-1} \sigma_2^{-1} Y^{-1} = \sigma_1 XY \sigma_2 X^{-1} \sigma_2^{-1} \sigma_1^{-1} Y^{-1}$$

since σ_1 and σ_2 commute. Therefore the equations

(2.1) $ABA^{-1}B^{-1} = \mu I$

and

(2.2) $XY(\sigma_2 X^{-1} \sigma_2^{-1})(\sigma_1^{-1} Y^{-1} \sigma_1) = \mu I$

are equivalent, we note also that the matrices X, Y, $(\sigma_2 X^{-1} \sigma_2^{-1})$, and $(\sigma_1^{-1} Y^{-1} \sigma_1)$ are diagonal.

Suppose now that σ_1 has order 2^k and σ_2 has order 2^{m-k}, where $k \geq 1$ and $m - k \geq 1$. Then the corresponding linear space has a special coordinate system $z_{i,j}$, where $1 \leq i \leq 2^k$ and $1 \leq j \leq 2^{m-k}$ with the property that σ_1 cyclically permutes coordinates $z_{i,j}$ with the same index i and σ_2 cyclically permutes coordinates $z_{i,j}$ with the same index j.

Therefore, if we denote by $x_{i,j}$ and $y_{i,j}$ the diagonal elements of the matrices X and Y respectively, then equation (2.2) becomes equivalent to a series of equations

(2.3) $x_{i,j} y_{i,j} x_{i+1 \pmod{2^k},j}^{-1} y_{i,j+1 \pmod{2^{m-k}}}^{-1} = \mu$

for the diagonal elements. If we denote by

$$u_{i,j} =: x_{i,j} x_{i+1 \pmod{2^k},j}^{-1}$$

and

$$v_{i,j} =: y_{i,j} y_{i,j+1 \pmod{2^{m-k}}}^{-1}$$
then
\[\prod_i u_{i,j} = \prod_j v_{i,j} = 1. \]

Equation (2.3) above becomes
\[u_{i,j} = \mu v_{i,j}^{-1} \]
and hence we have obtained equations only for the parameters \(u_{i,j} \).

Thus our initial matrix equation (2.1) has been reduced to equations for \(u_{i,j} \):
\[\prod_i u_{i,j} = 1, \quad \prod_j u_{i,j} = \mu^{2^{m-k}}. \]

These parameters \(u_{i,j} \) define the complementary set of parameters \(v_{i,j} \).

Notice that for any \(u_{i,j} \) and \(v_{i,j} \) satisfying \(\prod_i u_{i,j} = \prod_j v_{i,j} = 1 \), we can find \(x_{i,j} \) and \(y_{i,j} \) so that
\[u_{i,j} = x_{i,j} x_{i+1(mod 2^k),j}^{-1}, \quad v_{i,j} = y_{i,j} y_{i,j+1(mod 2^{m-k})}^{-1}, \]
and hence we can obtain solutions of the equation (2.1). Thus there are many matrix pairs \(A, B \) that satisfy equation (2.1).

4. If \(n \) is divisible by \(p^m \), then matrices \(A \) and \(B \), consisting of \(n/p^m \) diagonal blocks of matrices \(A \) and \(B \) respectively, also satisfy the relation
\[[A, B] = ABA^{-1}B^{-1} = \mu I_n. \]

The Theorem follows.

This fact appeared previously in [BM].

Example 2.2. Let \(F_q \) be a field and let \(\mu \) be a primitive \(p^n \)-th root of unity in \(F_q \), where \(n > 1 \) and \(4 \mid q - 1 \). We decompose \(2^n \) coordinates into two groups of order \(2^{n-1} \) and take the diagonal matrix \(X = \text{diag}([1, 1, \ldots, i], [1, 1, \ldots, -i]) \), where brackets show the boundaries of each block. The element \(i \), with \(i^2 = -1 \), is contained in \(F_q \) since, by our assumption, 4 divides \(q - 1 \). Similarly, take the diagonal matrix \(Y = \text{diag}([1, \mu, \ldots, \mu^{2^{n-2}-1}], [\mu, \mu^2, \ldots, \mu^{2^{n-2}}]) \). Let \(\sigma_1 \) be the permutation which permutes variables cyclically within each block, and \(\sigma_2 \) be the permutation of order 2 which interchanges these two blocks of variables. Recall that \(\mu^{2^{n-1}} = -1 \). Then
\[X(\sigma_2 X^{-1} \sigma_2^{-1}) = \text{diag}([-1, 1, \ldots, 1], [-1, 1, \ldots, 1]) \]
and

\[Y(\sigma^{-1}Y^{-1}\sigma_1) = \text{diag}([-\mu, \mu, \ldots, \mu], [-\mu, \mu, \ldots, \mu]) \]

and hence

\[XY(\sigma_2X^{-1}\sigma_2^{-1})(\sigma_1^{-1}Y^{-1}\sigma_1) = \mu I. \]

If we take \(A = \sigma_1X, \ B = Y\sigma_2 \in \text{SL}_{2n}(F) \), then \([A, B] = ABA^{-1}B^{-1} = \mu I_{2n}.\)

Example 2.3. Let \(F_q \) be a field and let \(\mu \) be a \(p^n \)-th root of unity in \(F_q \) of order \(m \). If \(p = 2 \) and \(n = 2 \), consider the permutation matrices

\[
\sigma_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}
\]

of the group \(\text{SL}_4(F_q) \). Since \(\sigma_1 \) and \(\sigma_2 \) commute, it is seen that, for every pair of diagonal matrices

\[
X = \begin{pmatrix} x_1 & 0 & 0 & 0 \\ 0 & x_2 & 0 & 0 \\ 0 & 0 & x_3 & 0 \\ 0 & 0 & 0 & x_4 \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 & 0 & 0 & 0 \\ 0 & y_2 & 0 & 0 \\ 0 & 0 & y_3 & 0 \\ 0 & 0 & 0 & y_4 \end{pmatrix}
\]

in \(\text{SL}_4(F_q) \), the commutator

\[[X\sigma_1, Y\sigma_2] \]

is a diagonal matrix in \(\text{SL}_4(F_q) \). Taking account of this, it is immediately seen that the scalar matrix \(\mu I_4 \) can be expressed in the form of commutator \([X\sigma_1, Y\sigma_2]\) for some diagonal matrices \(X, Y \in \text{SL}_4(F_q) \). For, the definition of product of matrices gives

\[
[X\sigma_1, Y\sigma_2] = \begin{pmatrix} x_1y_2x_3^{-1}y_1^{-1} & 0 & 0 & 0 \\ 0 & x_2y_1x_4^{-1}y_2^{-1} & 0 & 0 \\ 0 & 0 & x_3y_4x_1^{-1}y_3^{-1} & 0 \\ 0 & 0 & 0 & x_4y_3x_2^{-1}y_4^{-1} \end{pmatrix}
\]

Then necessarily
\begin{align*}
(2.4) & \quad x_1 y_2 x_3^{-1} y_1^{-1} = \mu \\
(2.5) & \quad x_2 y_4 x_4^{-1} y_2^{-1} = \mu \\
(2.6) & \quad x_3 y_4 x_1^{-1} y_3^{-1} = \mu \\
(2.7) & \quad x_4 y_3 x_2^{-1} y_4^{-1} = \mu \\

\end{align*}

Multiplying conditions (2.4) and (2.5) gives

\[x_1 x_2 (x_3 x_4)^{-1} = \mu^2. \]

Similarly, multiplying (2.6) and (2.7) gives

\[x_3 x_4 (x_1 x_2)^{-1} = \mu^2. \]

Note that the additional hypothesis

\[\det X = x_1 x_2 x_3 x_4 = 1 \]

implies that

\[(x_1 x_2)^2 = \mu^2 \quad \text{and} \quad (x_3 x_4)^2 = \mu^2. \]

Then the above three relations show that

\[x_1 x_2 = \pm \mu \quad \text{and} \quad x_3 x_4 = \pm \mu \]

when \(\mu^2 = 1 \) and

\[x_1 x_2 = \pm \mu \quad \text{and} \quad x_3 x_4 = \mp \mu \]

when \(\mu^2 = -1 \).

On the other hand, multiplying conditions (2.4) and (2.6) gives

\[y_2 y_4 (y_1 y_3)^{-1} = \mu^2. \]

Similarly, multiplying conditions (2.5) and (2.7) gives

\[y_1 y_3 (y_2 y_4)^{-1} = \mu^2. \]

Note that the hypothesis

\[\det Y = y_1 y_2 y_3 y_4 = 1 \]

on \(\det Y \) therefore implies that
\[(y_2y_4)^2 = \mu^2 \quad \text{and} \quad (y_1y_3)^2 = \mu^2.\]

Then

\[y_2y_4 = \pm\mu \quad \text{and} \quad y_1y_3 = \pm\mu\]

when \(\mu^2 = 1\) and

\[y_2y_4 = \pm\mu \quad \text{and} \quad y_1y_3 = \mp\mu\]

when \(\mu^2 = -1\).

In particular we derive from these results that the matrices

\[
X = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mu
\end{pmatrix}
\quad \text{and} \quad
Y = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

satisfy the relation

\[\left[X_{\sigma_1}, Y_{\sigma_2}\right] = \mu I_4\]

when \(m = 2\).

Similarly, the matrices

\[
X = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mu
\end{pmatrix}
\quad \text{and} \quad
Y = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

satisfy the relation

\[\left[X_{\sigma_1}, Y_{\sigma_2}\right] = \mu I_4\]

when \(m = 4\).

In conformity with the above results, we shall distinguish two cases:

\((a)\) If \(m = 2\), let \(A\) and \(B\) be two square matrices of order 4 over the field \(F_q\) which can be written in the form
$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \mu & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \mu & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mu \\ \mu & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

with respect to the same basis. It follows from the method of calculating a determinant that $\det A = 1$ and $\det B = 1$. The definition of product of matrices gives

$$ABA^{-1}B^{-1} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & \mu \end{pmatrix}$$

(b) If $m = 4$, let A and B be two square matrices of order 4 over the field F_q which can be written in the form

$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ \mu & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \mu & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \mu \\ \mu & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

with respect to the same basis. The method of calculating a determinant and the hypothesis on μ imply that $\det A = 1$ and $\det B = 1$. Now, it is immediate that A and B satisfy the desired condition

$$ABA^{-1}B^{-1} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & \mu \end{pmatrix}.$$

Theorem 2.4. Let p be a prime number and F be a finite field of order $q = p^k$. If $n \geq 3$ ($n \geq 2$ if $q \geq 5$), then $SL_n(F)$ is equal to its own commutator group.

Proof. The commutator subgroup $SL_n^c(F) = [SL_n(F), SL_n(F)]$ is the smallest normal subgroup N of $SL_n(F)$ such that $SL_n(F)/N$ is abelian. Theorem 2.1 readily implies that the center Z of $SL_n(F)$ is a normal subgroup of $SL_n^c(F)$.

By the First Isomorphism Theorem,

$$SL_n^c(F)/Z \leq PSL_n(F)$$

and

$$PSL_n(F)/(SL_n^c(F)/Z) \cong SL_n(F)/SL_n^c(F).$$
Since $PSL_n(F)$ is a finite simple group for every finite field F of order q and $n \geq 3$ ($n \geq 2$ if $q \geq 5$), it follows that $SL_n^c(F)$ is either Z or $SL_n(F)$.

On the other hand, a non-cyclic simple group is not solvable. Then

$$SL_n^c(F) = SL_n(F).$$

\[\square\]

REFERENCES

Received: December 14, 2007