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Abstract

In this paper, we introduce the VQM-set and study some of its
algebraic properties. Its elements are triplets consisting of a vector, a
quaternion and a matrix, hence the VQM abbreviation. Operations such
as addition, scalar multiplication, are defined on the VQM-set, which
turn it into a vector space. A special multiplication turns a subset of
the VQM-set into a group, called the VQM-group. We show how this
VQM-group could be used to represent the generalized transformations
in three-dimensional computer graphics, with translation, rotation and
non-uniform scaling factor components.
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1 Introduction

The Quaternions, denoted by H, were first invented by Sir William Rowan
Hamilton in 1843 as an extension of the complex numbers into four-dimensions
[4]. The rotational properties of quaternions were well known to Hamilton,
but it wasn’t until 1985 that quaternions were introduced into the computer
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graphics community to represent rotations [7]. Let q = [x, y, z, w] ∈ H1 where
H1 is the group of unit-length quaternions under multiplication1. It is easy to
prove that when q = [sin θA, cos θ], where A is a unit 3D vector and θ ∈ (−π, π],
then q is a unit quaternion. Furthermore, one can also show that the rotation,
Rq : H → H defined by Rq(r) = qrq−1, with r = [a, b, c, 0] (called a “pure
quaternion”), is a linear transformation and it represents a rotation by 2θ
around the vector A in the so-called axis-angle notation [1]. Notice that, as
a matter of fact, Rq is basically a rotation in R

3. Also, one can easily show
that any non-unit quaternion p = λq, λ ∈ R, |q| = 1, represents the same
rotation as q. In particularly, in 3-D graphics, quaternions are often preferred
over other rotation representations (i.e. fixed-angle, Euler-angle, etc.) for
their practicality, efficiency and elegance. In addition, quaternions also allow
us to avoid unpleasant phenomena such as the “gimbal-lock” and errors in
interpolations.

Similar to the homogeneous matrix approach, a quaternionic rotation could
be combined with a translation vector, and a uniform scaling factor. In lit-
erature, this transformation is usually known as a VQS-transformation (or a
VQS-structure in computer graphics) [5], where the “VQS” stands for “vector-
quaternion-scalar”. More specifically, a VQS-transformation is a map S =
[v, q, s], defined by:

S(r) = [v, q, s]r

= q(sr)q−1 + v

where v = [v1, v2, v3, 0] ∈ H is a pure quaternion representing a translation,
q = [x, y, z, w] ∈ H1 is a unit quaternion representing a rotation, and s ∈ R

is a scalar representing a uniform scaling factor. In other words, a VQS-
transformation basically scales r by s, rotates the outcome by q, and then
translates the latter by v. It is easy to see that the sequence above always
results in a pure quaternion.

Example 1.1. Let T = [v, q, s] be a VQS-transformation, where v is a pure
quaternion, q is a unit quaternion, and s is a scalar, given by: v = [1, 1, 1, 0], q =
[0, 1, 0, 0] (a rotation by 180o about the y-axis), and s = 3. Consider also the
vector (point) r, also a pure quaternion, given by: r = [−1, 2,−1, 0]. Applying
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Figure 1:

T to r, we get:

Tr = [v, q, s]r = q(sr)q−1 + v

= [0, 1, 0, 0](3[−1, 2,−1, 0])[0,−1, 0, 0] + [1, 1, 1, 0]

= [0, 1, 0, 0][−3, 6,−3, 0][0,−1, 0, 0] + [1, 1, 1, 0]

= [0, 1, 0, 0][−3, 0, 3, 6] + [1, 1, 1, 0]

= [3, 6, 3, 0] + [1, 1, 1, 0]

= [3, 6, 3, 0] + [1, 1, 1, 0]

= [4, 7, 4, 0]

Note that, when representing the transformation, VQS-transformations
only allow a uniform scaling operation. That is, all x, y and z components
of the vector r must be scaled by the same value. The idea of this paper is
to extend VQS-transformations to VQM-transformations (“vector-quaternion-
matrix”) and achieve a non-uniform scaling operation, without necessarily
losing any of the algebraic properties.

2 Quaternion Extension

In order to define the VQM structure, we need to extend the quaternion oper-
ations to include the multiplication with a matrix and discuss some properties
of this operation. Let M be any 4 × 4 matrix, i.e. M = (mi), where mi

(i ∈ {1, 2, 3, 4}) are the four column vectors of M. The “multiplication” be-
tween a quaternion q and M is thus defined as follows:

Definition 2.1. Let q ∈ H and M ∈ M4×4(R). Then, q · M = (qmi) and
M · q = (miq).
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Note that each column in M is a 4-dimensional vector and therefore can
be treated as a quaternion. In other words, the definition states that the
multiplication of a quaternion and a 4 × 4 matrix is the multiplication(s) of
the quaternion and the column vectors (quaternions) of the given matrix. The
operation always results in another 4× 4 matrix. Clearly, the above definition
does not represent a multiplication in the ordinary sense. If q �= 0, it is actually
a left and a right action of the quaternion group H−{0} on the set M4×4(R).
This becomes clear from the following propositions:

Proposition 2.2. We have e·M = M ·e = M , where e = [0, 0, 0, 1] represents
the identity quaternion.

Proof. Indeed, by Definition 2.1, we have:

e · M = (emi) = (mi) = M = (mi) = (mie) = M · e

We also have the “associative-like” properties of the multiplication between a
quaternion and a matrix:

Proposition 2.3. Let M be any 4 × 4 matrix and q1 and q2 be quaternions.
Then, we have:

(i) q1 · (M · q2) = (q1 · M) · q2

(ii) q1 · (q2 · M) = (q1q2) · M
(iii) (M · q1) · q2 = M · (q1q2)

Proof. For (i) we have, q1 · (M · q2) = q1 · (miq2) = (q1(miq2)) = ((q1mi)q2) =
(q1mi) · q2 = (q1 · M) · q2. Properties (ii) and (iii) are done similarly.

The above properties indicate that, when multiplying a sequence of quaternions
and a matrix, the operations can be performed in any preferred order and, yet,
it will yield exactly the same result.

We further call M = (mi), i ∈ {1, 2, 3, 4}, a “homogeneous quaternion ma-
trix”, if all the first three column vectors mi , (i = 1, 2, 3), are pure quaternions
and m4 = e (i = 4) is the identity quaternion (i.e. mi = [ai1, ai2, ai3, 0]t and

e = [�0, 1]t). In other words, M =
(

(aij ) �0t

�0 1

)
, i, j ∈ {1, 2, 3}, where (αij) is the

3 × 3 matrix formed by the αij-components of the mi’s, (i = 1,2,3) and �0 is
the usual 1 × 3 zero vector. Under this definition, for any quaternion q and
pure quaternion r, we have:

Proposition 2.4. Let M be any 4× 4 homogeneous quaternion matrix, q be a
quaternion and r be a pure quaternion. Then:

q(Mr)q−1 = (q · M · q−1)r
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Proof. Since M is a homogeneous quaternion matrix, its multiplication with
r yields another pure quaternion. Rotating Mr by q is the same as applying
an equivalent rotation matrix [7]. Let Lq be a 4 × 4 homogeneous matrix
representing the same rotation as the one by q. Following Def. 2.1 and the
associativity of matrix multiplication, we have:

q(Mr)q−1 = Lq(Mr) = (LqM)r = (Lq(mi))r = (q(mi)q
−1)r = (q · M · q−1)r

By a similar argument, we also have:

Proposition 2.5. (q2 ·N ·q−1
2 )(q1 ·M ·q−1

1 ) = q2 ·(N(q1 ·M ·q−1
1 ))·q−1

2 , where q1

and q2 are quaternions, and M and N are homogeneous quaternion matrices.

Proof. Let Lq2 and Kq1 be the matrices as in the proof of Prop.2.4. Then:

(q2 · N · q−1
2 )(q1 · M · q−1

1 ) = (Lq2N)(Kq1M)

= Lq2(N(Kq1(M))

= q2 · (N(q1 · M · q−1
1 )) · q−1

2

Notice that the multiplication of two homogeneous quaternion matrices always
generates another homogeneous quaternion matrix. Furthermore, since for any
pure quaternion mi, qmiq

−1 yields another pure quaternion and since qeq−1 =
e, the “rotation” of a homogeneous quaternion matrix with any quaternion
will result in another homogeneous quaternion matrix.

3 The VQM Algebraic Structure

In this section, we introduce the VQM as an abstract algebraic set, define some
operations, and examine important algebraic properties of the set.

Definition 3.1. A VQM set T is a set of triplets T = [v, q, M ], where v =
[a, b, c, 0] ∈ H is a pure quaternion, q = [x, y, z, w] ∈ H is a quaternion, and
M is a 4 × 4 homogeneous quaternion matrix.

In other words, a VQM structure is an extension of a VQS structure by
replacing the uniform scaling factor with a homogeneous quaternion matrix.
In the following discussion, we denote by T be the set of all VQM maps, i.e.
T = {Ti | Ti = [vi, qi, Mi], i ∈ N}.
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Definition 3.2. Let T1 = [v1, q1, M1], T2 = [v2, q2, M2] ∈ T , where M1 =(
(αij ) �0t

�0 1

)
, M2 =

(
(βij) �0t

�0 1

)
are homogeneous quaternion matrices. Then,

addition on T is defined by: T1 +T2 = [v1, q1, M1]+ [v2, q2, M2] = [v1 + v2, q1 +

q2, M1 + M2], where M1 + M2 =
(

(αij+βij) �0t

�0 1

)
.

Remark 3.3. Since addition of quaternions (and matrices) is commutative,
so is the VQM addition. Also, the element T = [0, 0, 0] (where the last 0 is the

0 =
(

(0) �0t

�0 1

)
) is the ’identity’ element for addition.

Definition 3.4. Let T = [v, q, M ] ∈ T and c ∈ R , where M =
(

(aij ) �0t

�0 1

)
.

Then, scalar multiplication on T is defined by: cT = c[v, q, M ] = [cv, cq, cM ],

where cM =
(

(cαij) �0t

�0 1

)
.

Remark 3.5. Since the scalar product is distributive over addition for quater-
nions (and matrices), so is the scalar product over the VQM set. Also, it is not
hard to show that τ is closed under VQM addition and scalar multiplication
and, considering Rem.3.3, that is a vector space. Indeed, T satisfies all vector
space axioms. T is 108-dimensional, due to the fact that v is 3-dimensional,
q is 4-dimensional, a homogeneous matrix M is 9-dimensional, and therefore
T ∼= R3 × R4 × R9 and dim(R3 × R4 × R9) = 108.

Definition 3.6. Let T1 = [v1, q1, M1] and T2 = [v2, q2, M2] ∈ T , where q1, q2 ∈
H − {0} and M1 and M2 are homogeneous quaternion matrices. Then, multi-
plication on T is defined by:

T2T1 = [v2, q2, M2][v1, q1, M1] = [q2(M2v1)q
−1
2 + v2, q2q1, (q

−1
1 · M2 · q1)(q1 · M1 · q−1

1 )]

As in the case of VQM addition, and scalar multiplication, T is closed
under multiplication since the first and second elements are quaternions, and
the third produces a 4× 4 homogeneous quaternion matrix (since the product
of two homogeneous quaternion matrices is a homogenous quaternion matrix).
Nevertheless, the geometrical intuition of the above multiplication may not
be as obvious as that of addition, and scalar multiplication, on the VQM
structure. It will become clear when we bring the structure into the context
of 3D transformations discussed in the following sections.

Proposition 3.7. The multiplication defined on T is associative. That is:

[v3, q3, M3]([v2, q2, M2][v1, q1, M1]) = ([v3, q3, M3][v2, q2, M2])[v1, q1, M1].

Proof. See Appendix.
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Remark 3.8. Notice that the set T does not form an algebra. That is because
the multiplication above is not defined for all of its elements (e.g. one cannot
multiply T1 = [v1, 0, M1] ∈ T with anything in T ). Considering a subset T 0 of
T , for which q1, q2 ∈ H − {0}, one can close the multiplication, even though
one still does not have an algebra since T 0 is no longer a vector space (no
additive identity, since [0, 0, 0] /∈ T 0).

We denote the set of all VQM maps T = [v, q, M ], where q ∈ H − {0} and
M is invertible, by T ∗. That is:

T ∗ = {T | T = [v, q, M ], q ∈ H − {0}, M invertible}.

Lemma 3.9. If M is invertible, then q · M · q−1 is invertible.

Proof. Denote by Lq the matrix rotation operator q · () · q−1, as in the proof
of Proposition 2.4. Then, (q ·M · q−1)−1 = (LqM)−1 = M−1L−1

q , which means
that (q · M · q−1)−1 exists since both M−1 and L−1

q exist.

Proposition 3.10. T ∗ is closed under the multiplication defined in Def.3.6.

Proof. Let Ti, Tj ∈ T ∗. Then, qi, qj ∈ H − {0} and Mi and Mj are invertible.
Since H is a division algebra, we have qjqi ∈ H − {0}, and in view of Lem.3.9,
we also have that qi ·Mi · q−1

i and q−1
i ·Mj · qi are invertible. Hence, (q−1

i ·Mj ·
qi)(qi ·Mi · q−1

i ) is also invertible (its inverse is (qi ·Mi · q−1
i )−1(q−1

i ·Mj · qi)
−1).

And since TjTi = [qj(Mjvi)q
−1
j +vj , qjqi, (q

−1
i ·Mj · qi)(qi ·Mi · q−1

i )], that means
TjTi ∈ T ∗, since qjqi ∈ H − {0} and since its last component is invertible.

Remark 3.11. Notice that a homogeneous quaternion matrix M being invert-
ible is not equivalent in having detM �= 0. For example, if i and j denote the

square roots of unity in H, the matrix: M =

⎛
⎜⎜⎝

i j 0 0
j i 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ has detM = 0,

but it is invertible though, with M−1 =

⎛
⎜⎜⎝
−i/2 −j/2 0 0
−j/2 −i/2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.

Proposition 3.12. (a) T ∗ has an identity element I with respect to its mul-
tiplication. (b) Every T in T ∗ has an inverse T−1 with respect to the multipli-
cation.

Proof. See Appendix

Theorem 3.13. The set T ∗ is a group with respect to the multiplication de-
fined on T .
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Proof. By Prop.3.10, we have that T is closed under multiplication. Also,
by Prop.3.7 we have that the multiplication is associative, and by Prop.3.12
that it has and identity element, and that each element in T ∗ has an inverse.
Therefore, T ∗ is a group.

Remark 3.14. Since the quaternion multiplication is non-commutative, it
makes the VQM multiplication non-commutative as well. Therefore, T ∗ is
a non-commutative group which we call the VQM-group.

4 Transformations with VQM Maps

As mentioned earlier, a VQS map can be used to represent a three-dimensional
transformation with translation, rotation and scaling operations. However,
only a uniform scaling factor is allowed. This shortcoming restricts its appli-
cation in computer graphics and motivates an extension to the VQM map. We
first define the following:

Definition 4.1. Let r = [a, b, c, 0] be a pure quaternion where (a, b, c) rep-
resents a vector in R

3. A VQM transformation T = [v, q, M ] is a map
T : H → H, defined by:

T (r) = [v, q, M ]r = q(Mr)q−1 + v

In the above definition, if M represents a 4 × 4 homogeneous non-uniform
scaling matrix, q a rotation quaternion and v a translation vector (i.e. a
pure quaternion), then, a VQM transformation is to scale by M, rotate by
q, and translate by v. It is easy to verify that the result is equivalent to a
transformation by a 4×4 homogeneous matrix that contains the same scaling,
rotation and translation.

Example 4.2. Let T = [v, q, M ] be a VQM-transformation, where v is a pure
quaternion, q is a unit quaternion, and M is 4 × 4 homogeneous quaternion
matrix, given by: v = [1, 1, 1, 0], q = [0, 1, 0, 0], (a rotation by 180o about the

y-axis), and M =

⎛
⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎞
⎟⎟⎠. Consider the vector (point) r, also a pure
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Figure 2:

quaternion, given by: r = [−1, 2,−1, 0]. Applying T to r, we get:

Tr = [v, q, M ]r = q(Mr)q−1 + v

= [0, 1, 0, 0](

⎛
⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎞
⎟⎟⎠ [−1, 2,−1, 0])[0,−1, 0, 0] + [1, 1, 1, 0]

= [0, 1, 0, 0][−2, 2,−2, 0][0,−1, 0, 0] + [1, 1, 1, 0]

= [0, 1, 0, 0][−2, 0, 2, 2] + [1, 1, 1, 0]

= [2, 2, 2, 0] + [1, 1, 1, 0]

= [3, 3, 3, 0]

Remark 4.3. Notice that the transformation above can also be executed, in
view of Prop.2.4, as follows:

Tr = [v, q, M ]r = q(Mr)q−1 + v = (q · M · q−1)r + v

= ([0, 1, 0, 0] ·

⎛
⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

⎞
⎟⎟⎠ · [0,−1, 0, 0])[−1, 2,−1, 0] + [1, 1, 1, 0]

= [3, 3, 3, 0]

Theorem 4.4. Two VQM-transformations can be composed via the VQM mul-
tiplication.
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Proof. Let [v1, q1, M1], [v2, q2, M2] ∈ T be two VQM transformations. The
consecutive transformation on a pure quaternion r = [a, b, c, 0] with two VQM
maps is given, by definition, as follows:

[v2, q2, M2]([v1, q1, M1]r) = [v2, q2, M2](q1(M1r)q
−1
1 + v1)

= q2(M2(q1(M1r)q
−1
1 + v1))q

−1
2 + v2

= q2(M2(q1(M1r)q
−1
1 ))q−1

2 + q2(M2v1)q
−1
2 + v2

= q2(q1q
−1
1 )(M2(q1(M1r)q

−1
1 ))(q1q

−1
1 )q−1

2 + q2(M2v1)q
−1
2 + v2

= (q2q1)(q
−1
1 (M2(q1(M1r)q

−1
1 ))q1)(q

−1
1 q−1

2 ) + q2(M2v1)q
−1
2 + v2

= (q2q1)(((q
−1
1 · M2 · q1)(q1 · M1 · q−1

1 ))r)(q2q1)
−1 + q2(M2v1)q

−1
2 + v2

= [q2(M2v1)q
−1
2 + v2, q2q1, (q

−1
1 · M2 · q1)(q1 · M1 · q−1

1 )]r

= ([v2, q2, M2][v1, q1, M1])r

The above theorem demonstrates an important feature of the VQM structure.
It shows that, like the approach by 4× 4 homogeneous transformation matrix,
any consecutive transformations with VQM maps can first be composed by
multiplying the VQM-transformations together, and then apply the result as
a single transformation to all vertices of an object. This implies a significant
improvement in performance efficiency in praxis.

The derivation in the proof also captures the geometric intuition of the
definition of the multiplication. It simply points out that the composition
of two VQM-transformations, (e.g. [v2, q2, M2] and [v1, q1, M1]), always yields
another VQM-transformation, where:

(1) its translation component is obtained by applying the second VQM
transformation [v2, q2, M2] on the translation vector v1 of the first transforma-
tion (note that q2(M2v1)q

−1
2 + v2 = [v2, q2, M2]v1).

(2) its rotation component is equal to a composition of two rotations q2q1.
(3) its scaling matrix is the product of two rotated scaling matrices. Note

that, from Proposition 2.5, we have (q2 · M2 · q−1
2 )(q1 · M1 · q−1

1 ) = q2 · (M2(q1 ·
M1 · q−1

1 )) · q−1
2 . It implies that the first matrix (q1 · M1 · q−1

1 ) is the scaling
matrix M1 rotated by q1, which is concatenated with the other scaling matrix
M2 (i.e. M2(q1 ·M1 · q−1

1 )), then rotated by inverted q1 (since the result will be
rotated again by the combined q2q1 when used in the VQM transformation).

5 Conclusion

In this paper, the VQM-set T was introduced as an abstract algebraic set. Op-
erations, such as addition and scalar multiplication, were defined which made
it into a vector space. Under a defined multiplication, the VQM-subset T ∗
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formed a non-abelian group. While many other operations and properties on
the VQM-set remain to be explored, one important application of the VQM-
group is that it represents three-dimensional transformations in 3D computer
graphics. As such, VQM transformations allow different scaling (non-uniform)
in all three coordinate dimensions. This is the major feature that distinguishes
VQM from VQS transformations. On the other hand, just like in the VQS
case, the composition of VQM transformations can be implemented through
the VQM multiplication, and the transformation component (translation, ro-
tation and scaling factors) of key frames can be interpolated separately using
different interpolation algorithms (such as Lerp, Slerp, Elerp, etc.) [2]. This
would allow the VQM structure to maintain its superior geometric character-
istics over other interpolation methods with matrices, or other transformation
notations based on fixed angles, Euler angles, etc. In practice, functions for
VQM transformation and concatenation can be procedurally simplified. When
interpolated between two VQM key frames with fixed intervals in translation,
rotation and scaling parameters, an incremental algorithm can be applied to
remarkably reduce the computational expenses of VQM transformation and
concatenation [3].

Notes

1. We warn the reader for the slight difference in notation. In this paper, a
quaternion q = [x, y, z, w] has w (not x) as its scalar components, unlike in [7].
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Appendix

Proposition 3.7. The multiplication defined on T is associative.

Proof. Indeed, by the definition of VQM multiplication, we have:

[v3, q3, M3]([v2, q2, M2][v1, q1, M1])

= [v3, q3, M3][q2(M2v1)q
−1
2 + v2, q2q1, (q

−1
1 · M2 · q1)(q1 · M1 · q−1

1 )]

= [q3(M3(q2(M2v1)q
−1
2 + v2))q

−1
3 + v3, q3q2q1,

((q2q1)
−1 · M3 · (q2q1))((q2q1) · (q−1

1 · M2 · q1)(q1 · M1 · q−1
1 )) · (q2q1)

−1)]

From Prop.’s 2.2, 2.3 and 2.5, since

(q2q1) · (q−1
1 · M2 · q1)(q1 · M1 · q−1

1 )) · (q2q1)
−1

= (q2q1) · (q−1
1 · (M2(q1 · M1 · q−1

1 )) · q1) · (q2q1)
−1

= (q2q1q
−1
1 ) · (M2(q1 · M1 · q−1

1 )) · (q1q
−1
1 q−1

2 )

= q2 · (M2(q1 · M1 · q−1
1 )) · q−1

2

= (q2 · M2 · q−1
2 )(q1 · M1 · q−1

1 )

we have:

[v3,q3, M3]([v2, q2, M2][v1, q1, M1])

= [q3(M3(q2(M2v1)q
−1
2 + v2))q

−1
3 + v3, q3q2q1,

((q2q1)
−1 · M3 · (q2q1))(q2 · M2 · q−1

2 )(q1 · M1 · q−1
1 )]

= [q3(M3(q2(M2v1)q
−1
2 ))q−1

3 + q3(M3v2)q
−1
3 + v3, q3q2q1,

((q2q1)
−1 · M3 · (q2q1))(q2 · M2 · q−1

2 )(q1 · M1 · q−1
1 )] (1)

On the other hand:

([v3, q3, M3][v2, q2, M2])[v1, q1, M1]

= [q3(M3v2)q
−1
3 + v3, q3q2, (q

−1
2 · M3 · q2)(q2 · M2 · q−1

2 )][v1, q1, M1]

= [(q3q2)(((q
−1
2 · M3 · q2)(q2 · M2 · q−1

2 )v1)(q3q2)
−1 + q3(M3v2)q

−1
3 + v3, q3q2q1,

(q−1
1 · ((q−1

2 · M3 · q2)(q2 · M2 · q−1
2 )) · q1)(q1 · M1 · q−1

1 )]
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Again, based on the Prop.’s from Section 2, we have:

(q3q2)(((q
−1
2 · M3 · q2)(q2 · M2 · q−1

2 )v1)(q3q2)
−1 = (q3q2)(q

−1
2 (M3(q2(M2v1)q

−1
2 ))q2)(q

−1
2 q−1

3 )

= q3(M3(q2(M2v1)q
−1
2 ))q−1

3

and

q−1
1 · ((q−1

2 · M3 · q2)(q2 · M2 · q−1
2 )) · q1 = q−1

1 · (q−1
2 · (M3(q2 · M2 · q−1

2 )) · q2) · q1

= (q−1
1 q−1

2 ) · (M3(q2 · M2 · q−1
2 )) · (q2q1)

= (q2q1)
−1 · (M3(q2 · M2 · q−1

2 )) · (q2q1)

= ((q2q1)
−1 · M3 · (q2q1))(q2 · M2 · q−1

2 )

Thus:

([v3, q3, M3][v2, q2, M2])[v1, q1, M1]

=[(q3q2)(((q
−1
2 · M3 · q2)(q2 · M2 · q−1

2 )v1)(q3q2)
−1 + q3(M3v2)q

−1
3 + v3,

q3q2q1, (q
−1
1 · ((q−1

2 · M3 · q2)(q2 · M2 · q−1
2 )) · q1)(q1 · M1 · q−1

1 )]

=[q3(M3(q2(M2v1)q
−1
2 ))q−1

3 + q3(M3v2)q
−1
3 + v3, q3q2q1,

((q2q1)
−1 · M3 · (q2q1))(q2 · M2 · q−1

2 )(q1 · M1 · q−1
1 )] (2)

But (1) = (2), and therefore we obtain:

[v3, q3, M3]([v2, q2, M2][v1, q1, M1]) = ([v3, q3, M3][v2, q2, M2])[v1, q1, M1].

Proposition 3.12. (a) T ∗ has an identity element I with respect to its mul-
tiplication. (b) Every T in T ∗ has an inverse T−1 with respect to the multipli-
cation.

Proof. (a) Let T = [v, q, M ] be in T ∗. Consider the element I = [0, e, I] of T ∗,
where e and I are the identity quaternion and matrix, respectively. Then:

T I = [v, q, M ][0, e, I]

= [q(M0)q−1 + v, qe, (e−1 · M · e)(e · I · e−1)]

= [v, q, MI] (See Prop. 2.2)

= [v, q, M ] = T

Similarly:

IT = [0, e, I][v, q, M ]

= [e(Iv)e−1 + 0, eq, (q−1 · I · q)(q · M · q−1)]

= [v, q, q−1 · (I(q · M · q−1)) · q] (See Prop. 2.5)

= [v, q, q−1 · (q · M · q−1) · q]
= [v, q, (q−1q) · M · (q−1q)] (See Prop. 2.3)

= [v, q, M ] = T
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Hence, I = [0, e, I] is the identity element in T ∗.

(b) Let T = [v, q, M ] be in T ∗. Consider the element T−1 = [v, q, M ]−1 =
[M−1(q−1(−v)q), q−1, q · (q · M · q−1)−1 · q−1] ∈ T ∗. Recall that (q · M · q−1)−1

exists, in view of Lem.3.9. Then:

TT−1 = [v, q, M ][v, q, M ]−1

= [q(M(M−1(q−1(−v)q)))q−1 + v, qq−1,

(q · M · q−1)(q−1 · (q · (q · M · q−1)−1 · q−1) · q)]
= [q(q−1(−v)q)q−1) + v, e, (q · M · q−1)((q−1q)(q · M · q−1)−1(q−1q))]

= [−v + v, e, (q · M · q−1)(q · M · q−1)−1]

= [0, e, I] = I

Similarly:

T−1T = [v, q, M ]−1[v, q, M ]

= [q−1(q · (q · M · q−1)−1 · q−1)v)q + M−1(q−1(−v)q),

q−1q, (q−1 · (q · (q · M · q−1)−1 · q−1) · q)(q · M · q−1)]

= [(q−1 · (q · (q · M · q−1)−1 · q−1) · q)v − M−1(q−1vq), e,

((q−1q)(q · M · q−1)−1(q−1q))(q · M · q−1)]

= [(q · M · q−1)−1v − M−1(q−1vq), e, (q · M · q−1)−1(q · M · q−1)]

= [0, e, I] = I,

where in the last step of the proof above, we used the fact that

(q · M · q−1)−1v = (MqM)−1v = (M−1M−1
q )v = M−1(M−1

q v) = M−1(q−1vq).

Therefore, T−1 = [M−1(q−1(−v)q), q−1, q · M−1 · q−1] is the inverse of T =
[v, q, M ] in T ∗.
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