Finite Groups in which $(S-)$Semipermutability is a Transitive Relation

Lifang Wang

Department of Mathematics
Shanxi Normal University
Linfen, Shanxi, 041004, P. R. China
lfwang_2003@yahoo.com.cn

Yangming Li

Department of Mathematics
Guangdong Institute of Education
Guangzhou, 510310, P. R. China
liyangming@gdei.edu.cn

Yanming Wang

Lingnan College and Dept. of Math.
Zhongshan University, Guangzhou, 510275, P. R. China
stswym@zsu.edu.cn

Abstract

Let G be a finite group. A subgroup H of G is called semipermutable (or S-semipermutable) in G if H permutes with every subgroup K (or every Sylow p-subgroup) of G with $(|K|, |H|) = 1$ (or $(p, |H|) = 1$, where $p \in \pi(G)$). A group G is called an BT–group (or SBT-group) if semipermutability (S-semipermutability) is a transitive relation in G. In this paper, we determine the structure of BT–group (or SBT-group) and classify the minimal non-BT–groups (or minimal non-SBT-group).

Mathematics Subject Classification: 20D10, 20D20

Keywords: (S-)semipermutable subgroup, BT–group, SBT-group

1Project supported in part by the NSFC(10671114), the NSF for youth of Shanxi Province(2007021004), TianYuan Fund of Mathematics of China(10726002).

2Project supported in part by NSF of Guangdong (06023728) and ARF(GDEI).

3Project supported by the NSFC(10571181).
1 Introduction

All groups considered in this paper are finite. Our notations and notion are standard and taken mainly from [4]. Throughout this article, G stands for a finite group and $\pi(G)$ denotes the primes dividing $|G|$ and G_p, a Sylow p-subgroup of G for some prime $p \in \pi(G)$.

Two subgroups H and K of G are said to be permutable if $\langle H, K \rangle = HK = KH$. A subgroup H of G is called permutable if H permutes with every subgroup of G. Permutable subgroups were initially studied by Ore[8], who called them quasinormal, in 1939. A subgroup H of G is called S-permutable if H permutes with every Sylow subgroup of G. This concept was introduced by Kegel in [7], who called them S-quasinormal. As the generalizations of permutability and S-permutability, Zhongmu Chen in [2] introduced the following: A subgroup H of G is called semipermutable in G if H permutes with every subgroup K of G with $(|H|, |K|) = 1$, and S-semipermutable if H permutes with every Sylow p-subgroup of G with $(p, |H|) = 1$, who called them seminormal, S-seminormal subgroup of G, respectively. It is easy to see that a permutable (resp. S-permutable) subgroup of G is a semipermutable (resp. S-semipermutable) subgroup of G. The converse is not true in general. Usually (S)-seminormality cannot imply subnormality while S-permutability can by a result of Kegel [7]. For example, a Sylow 2-subgroup of the symmetric group S_3 of degree 3 is semipermutable in S_3 but not S-permutable in S_3. Many authors studied the influence of $(S-)sempemutability of some subgroups on the structure of groups. For example, Chen, in [2], proved that G is supersolvable if every maximal subgroup of any Sylow subgroup of G is semipermutable in G. Zhang and Wang [14] proved that G is supersolvable if one of following holds: (1) every maximal subgroup of any Sylow subgroup of G is S-semipermutable in G; (2) every minimal subgroup and cyclic subgroup of order 4 of G is S-semipermutable in G. Zhang and Wang in [14] classified the finite nonabelian simple groups which contain a nontrivial semipermutable (s-semipermutable) subgroup.

Recall that G is said to be a T-group (resp. PT-group, PST-group), if normality (resp. permutability, S-permutability) is a transitive relation in G. From 1950s, especially in recent years, due to the efforts of many leading mathematicians, such as Gaschütz, Robinson, Cossey, Ballester-Bolinches, etc, many characterizations of T-group, PT-group, PST-group were discovered. The study of these classes of groups has undoubtedly constituted a fruitful topic in group theory. The structure of solvable T-groups was determined by Gaschütz [5] in 1957, he showed that these are exactly the groups with an abelian normal Hall subgroup L of odd order such that G/L is a Dedekind group and the elements of G induce power automorphisms in L. The corresponding theorem for solvable PT-group (resp. PST-group) is due to Zacher.
Stimulated by results in above, we naturally consider the parallelism questions about semipermutability and S-semipermutability. Semipermutability and S-semipermutability, like normality, permutability and S-permutability, is not a transitive relation in an arbitrary group. For example, S_4, the symmetric group of degree 4, is a counterexample. In this paper, we study the structure of groups in which semipermutability or S-semipermutability is transitive, that is, groups G such that H semipermutable (resp. S-semipermutable) in K and K semipermutable (resp. S-semipermutable) in G imply that H is semipermutable (resp. S-semipermutable) in G. Such groups are called BT-groups (resp. SBT-groups). A byproduct of our results is that solvable BT-group and solvable SBT-group coincide. We also give the structure of the minimal non-BT-groups (resp. minimal non-SBT-groups), i.e., the group which is not a BT-group (resp. SBT-group), but every proper subgroup of which is a BT-group (resp. SBT-group).

Remark: It is easy to see that every nilpotent group is a BT-group (SBT-group).

2 Preliminaries

In this section, we give some results which will be useful in the sequel.

Deducing from the definitions directly, we get:

Lemma 2.1 Suppose that H is $(S$-)semipermutable in a G, $K \leq G$. Then:
1. If $H \leq K$, then H is $(S$-)semipermutable in K;
2. If N is a normal p-subgroup of G, then HN/N is $(S$-)semipermutable in G/N.

Lemma 2.2 Suppose that N is a normal p-subgroup of G, where $p \in \pi(G)$. If all p'-elements of G induce power automorphisms in N by conjugate, then $G/C_G(N)$ is nilpotent.

Proof. If N is non-abelian, all p'-power automorphisms are trivial by [6]. Hence, $G/C_G(N)$ is a p-group. If N is abelian, the power automorphisms are in the center of $\text{Aut}(N)$. Hence $G/C_G(N)$ is nilpotent.

Lemma 2.3 Let G be a group. Then the following statements are equivalent:
1. Every subgroup of G is semipermutable in G;
(ii) For any $p, q \in \pi(G)$, and $p \neq q$, let $\langle x \rangle$ be a p–subgroup and $\langle y \rangle$ a q–subgroup. Then $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$.

Proof. (i) \implies (ii). It is clear.

(ii) \implies (i). Take any subgroup A of G. Let B be a subgroup of G such that $|A|, |B| = 1$. Clearly, any group can be generated by some elements of prime power order. Hence, we can assume that $A = \langle a_1, a_2, \ldots , a_m \rangle$ and $B = \langle b_1, b_2, \ldots , b_n \rangle$, where a_i, b_j are elements of G of prime power order. Since $|A|, |B| = 1$, it follows that $(o(a_i), o(b_j)) = 1$. By hypotheses, we have $\langle a_i \rangle \langle b_j \rangle = \langle b_j \rangle \langle a_i \rangle$. So

$$AB = \langle a_1, a_2, \ldots , a_m \rangle \langle b_1, b_2, \ldots , b_n \rangle = \langle b_1, b_2, \ldots , b_n \rangle \langle a_1, a_2, \ldots , a_m \rangle = BA.$$

Therefore, A is semipermutable in G. Thus, Lemma 2.3 is proved.

Lemma 2.4 Let N be a solvable minimal normal subgroup of a BT–group. Then N is a cyclic subgroup of prime order.

Proof. By hypotheses, we can suppose that N is an elementary abelian p–group for some $p \in \pi(G)$. Since N is a p–subgroup, every subgroup of N is semipermutable in N. It is clear that N is semipermutable in G. Since G is a BT–group, it follows that every subgroup of N is semipermutable in G.

Let G_p be a Sylow p–subgroup of G. Then $N \leq G_p$ and $N \cap Z(G_p) \neq 1$. Take a subgroup A of $N \cap Z(G_p)$ of order p. Then A is semipermutable in G. Let Q be any p'–subgroup of G. Then $AQ = QA$. Since $[Q, A] \leq N \cap AQ = A$, we have that $Q \leq N_G(A)$. Hence $O^p(G) \leq N_G(A)$. Since $A \leq Z(G_p)$, it follows that $A \leq G$. By the minimality of N, we have that $N = A$ is a cyclic subgroup of order p.

Lemma 2.5 If G is a solvable BT–group, then G is supersolvable.

Proof. Let N be a minimal normal subgroup of G. By Lemma 2.1, we have that G/N is a BT–group. Hence G/N is supersolvable by the induction on the order of G. From Lemma 2.4, we know that N is a cyclic subgroup of prime order. Hence G is supersolvable.

Lemma 2.6 Suppose that G is a group. Then G is supersolvable if every cyclic subgroup of G of prime order or order 4 is S-semipermutable in G.

Proof. See [14, Lemma 5].

Lemma 2.7 Suppose that G is a group and P is a normal p–subgroup of G for some $p \in \pi(G)$. If $G/C_G(P)$ is a p–group, then $P \leq Z(G)$.

Proof: See [10, Theorem VI. 3]].
3 The structure of BT–group or BST-group

Theorem 3.1 Let G be a group. The following statements are equivalent:

1. G is a solvable BT-group;
2. G is a solvable SBT-group;
3. every subgroup of G of prime power order is semipermutable in G;
4. every subgroup of G is semipermutable in G;
5. every subgroup of G is S-semipermutable in G;
6. every subgroup of G of prime power order is S-semipermutable in G;
7. there exists an abelian normal Hall subgroup L of G of odd order such that G/L is nilpotent and the elements of G induce power automorphisms in L. Moreover, for any two distinct primes $p, q \notin \pi(L)$, $[G_p, G_q] = 1$.

Proof: We get the theorem by proving $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (4) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (1)$.

$(1) \Rightarrow (3)$ Suppose that $\pi(G) = \{p_1, p_2, \ldots, p_n\}$, where $p_1 < p_2 < \cdots < p_n$. Applying Lemma 2.5, we have that the Sylow p_n-subgroup G_{p_n} of G is normal in G. Therefore, G_{p_n} is semipermutable in G. Clearly, every subgroup of G_{p_n} is semipermutable in G_{p_n}. Hence, every subgroup of G_{p_n} is semipermutable in G as G is a BT-group.

Again by Lemma 2.5, $G_{p_n} G_{p_{n-1}} \leq G$, where $G_{p_{n-1}}$ is a Sylow p_{n-1}-subgroup of G. Since every subgroup of P_n is semipermutable in G, we have that every subgroup of P_{n-1} is semipermutable in $P_{n-1} P_n$. Hence every subgroup of P_{n-1} is semipermutable in G as G is a BT-group.

Continuing this procedure, we can obtain that every subgroup of G_{p_i} is semipermutable in G, where $G_{p_i} \in \text{Syl}_{p_i}(G)$, $i = 1, 2, \ldots, n$. Therefore every subgroup of G of prime power order is semipermutable in G.

$(3) \Rightarrow (4)$. Let $H \leq G$. Since G is solvable, we can choose a Sylow base $\{H_{p_1}, H_{p_2}, \ldots, H_{p_s}\}$ of H. Then $H = H_{p_1} H_{p_2} \cdots H_{p_s}$. By the hypotheses, every H_{p_i} is semipermutable in G. Therefore, H is semipermutable in G.

$(4) \Rightarrow (5)$ and $(5) \Rightarrow (6)$ are obvious.

$(6) \Rightarrow (7)$ Suppose that every subgroup of G of prime order is semipermutable in G. We prove (7) in following steps:

(i) G is supersolvable.

By hypotheses, we know that every cyclic subgroup of G of prime order or order 4 is S-semipermutable. By Lemma 2.6, we have that G is supersolvable.

(ii) If N is a normal p–subgroup of G, then p'–elements of G induce power automorphisms in N.

Take any $a \in N$. Let x be a p'–element of G. Then $x \in G_{p'}$ for some
\(p'-\text{Hall subgroup of } G\). Then \(\langle a \rangle G_{p'}\) is a group. Hence
\[
a^{(x)} = a^{(x)} \cap \langle a \rangle G_{p'} = \langle a \rangle (a^{(x)} \cap G_{p'}) = \langle a \rangle (N \cap G_{p'}) = \langle a \rangle.
\]
Therefore \(x\) induce a power automorphism in \(\langle a \rangle\).

(iii) Let \(L = G^N\) be the nilpotent residual of \(G\). Then \(L\) is a abelian Hall subgroup of \(G\).

Let \(p\) be the largest prime dividing \(|G|\), \(P \in \text{Syl}_p(G)\). Since \(G\) is supersolvable by step (i), we know that \(P \leq G\). Now, we consider the quotient group \(G/P\). By Lemma 2.1, all subgroups of \(G/P\) is semipermutable in \(G/P\). By induction, \((G/P)^N = G^N P/P = LP/P\) is an abelian Hall subgroup of \(G/P\).

(a) If \(G/C_G(P)\) is a \(p\)-group, then \(G = PC_G(P)\). By Lemma 2.7, \(P \leq Z_\infty(G)\). Let \(L_p \in \text{Syl}_p(L)\). Suppose that \(L_p \neq 1\), by \(L_p \leq P\) and \(G = PC_G(P)\), we have \(L_p = [L_p, G] = [L_p, PC_G(P)] = [L_p, P] < L_p\), a contradiction. Hence \(L_p = 1\) and \(L\) is a \(p'\)-group. Therefore, \(L \cong LP/P\) is a normal Hall subgroup of \(G\).

(b) If \(G/C_G(P)\) is not a \(p\)-subgroup, then there exists a \(p'\)-element \(x\) such that \(P = [P, x]\) since \(G/C_G(P) \leq \text{Aut}(P)\). Hence \(P = [P, G] \leq L\). By (ii) and Lemma 2.2, we know that \(G/C_G(P)\) is nilpotent. So \(L \leq C_G(P)\) and \(P \leq Z(L)\). Since \(L/P\) is a normal abelian Hall subgroup of \(G/P\), it follows that \(L = P \times L_{p'}\) is a normal Hall subgroup of \(G\), where \(L_{p'}\) is the \(p'\)-Hall subgroup of \(L\).

(iv) \(L\) has odd order.

Let \(L_2\) be a Sylow 2-subgroup of \(L\). If \(L_2 \neq 1\), then all 2'-elements of \(G\) induce power automorphism in \(L_2\) by (ii). Since 2 is the smallest prime dividing \(|G|\), then \([L_2, G_2] = 1\), where \(G_2\) is a Hall 2'-Hall subgroup of \(G\). Hence, \(L_2 = [L_2, G] = [L_2, G_2] < L_2\), a contradiction, where \(G_2 \in \text{Syl}_2(G)\). So, \(L_2 = 1\) and \(L\) has odd order.

(v) The elements of \(G\) induce power automorphisms in \(L\).

This follows from (ii) and (iii).

(vi) For any two distinct primes \(p, q \not\in \pi(L)\), \([G_p, G_q] = 1\).

By the hypotheses, \(G_p G_q\) is a group. Since \(G_p G_q \cong G_p G_q L/L \leq G/L\), \(G_p G_q\) is nilpotent. Hence \([G_p, G_q] = 1\).

(vii) \(\Rightarrow\) (iv) we prove that every subgroup of \(G\) is semipermutable in \(G\).

By Lemma 2.3, we only need to prove \(\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle\), for any \(p\)-element \(x\) and \(q\)-element \(y\) in \(G\).

If \(p, q \in \pi(L)\), since \(L\) is a normal abelian Hall subgroup of \(G\), we have that \(x, y \in L\) and \(\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle\).

If \(p, q \not\in \pi(L)\), by hypotheses, \([x, y] = 1\). Hence \(\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle\).
Suppose that \(p \in \pi(L) \) or \(q \in \pi(L) \). Without lose generality, let \(p \in \pi(L) \). Then \(x \in L \) and \(\langle x \rangle \trianglelefteq G \). Hence \(\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle \).

(4) \Rightarrow (2) and (4) \Rightarrow (1) Obviously.

(2) \Rightarrow (6) Repeating the argument in (1) \Rightarrow (3).

Hence we get the equivalence of (1)-(7).

Corollary 3.2 Every solvable \(BT \)-group is a subgroup closed and quotient closed \(BT \)-group.

From Theorem 3.1 and the structure of \(PST \)-group \([1]\), we can obtain the following result:

Corollary 3.3 If \(G \) is a finite solvable \(BT \)-group, then \(G \) is a \(PST \)-group.

The following example indicates that \(BT \)-group is a proper subclass of \(PST \)-group.

Example. Let \(G = \langle a \rangle \rtimes (\langle x \rangle \times \langle y \rangle) \), where \(a^7 = x^2 = y^3 = 1, a^x = a^{-1}, a^y = a^4 \). Since the nilpotent residual \(L \) of \(G \) is \(\langle a \rangle \). By Agrawal’s theorem \([1]\), we know that \(G \) is a \(PST \)-group. However, since \(\langle x^a \rangle \langle y \rangle \neq \langle y \rangle \langle x^a \rangle \), by Theorem 3.1, we know that \(G \) is not a \(BT \)-group.

The following result tells us under certain conditions \(BT \)-groups and \(PST \)-groups may coincide.

Corollary 3.4 Let \(L \) be the nilpotent residual of a solvable group \(G \). If \(\pi(G)/\pi(L) = \{p\} \), then \(G \) is a \(BT \)-group if and only if \(G \) is a \(PST \)-group.

4 **Minimal non-\(BT \)-group**

In this section, we use the Theorem 3.1 to determine the structure of minimal non-\(BT \)-group. First, we give the following result:

Theorem 4.1 Let \(G \) be a minimal non-\(BT \)-group. Then

(i) \(G \) is solvable;

(ii) \(G \) has a normal Sylow subgroup;

(iii) \(|\pi(G)| = 2 \) or 3.

Proof. Assume that \(G \) is insolvable. Then \(G \) contains a minimal insolvable subgroup \(G_1 \). Since \(G \) is a minimal non-\(BT \)-group, it follows that each proper subgroup of \(G_1 \) is a solvable \(BT \)-group. By Lemma 2.5, each proper subgroup of \(G_1 \) is supersolvable. Hence \(G_1 \) is a solvable, a contradiction. Therefore, \(G \) is solvable. (i) is proved.
If G is supersolvable, then G has a normal Sylow subgroup. If G is non-supersolvable, then G is a minimal nonsupersolvable group by Theorem 3.1. Applying a result of Doerk [3], G has a normal Sylow subgroup. Hence (ii) is proved.

Denote the normal p–Sylow subgroup of G by P.

Since G is a minimal non-BT–group, from Theorem 3.1 and Lemma 2.3 there exist elements x, y of G of prime power order such that $(o(x), o(y)) = 1$ and $⟨x⟩⟨y⟩ = ⟨y⟩⟨x⟩$. By the minimality of G and without losing generality, we can suppose that $G = ⟨x, y⟩$.

If one of x, y is a p–element, x say, then $x ∈ P$. This implies that $G = ⟨x, y⟩ = P⟨y⟩$. Hence $|\pi(G)| = 2$.

Therefore assume that both x and y are not p–elements. Let H be a p'–Hall subgroup of G. Then $G/P ≅ H$ is an BT–group. By Theorem 3.1, each subgroup of G/P is semipermutable. This implies that $(⟨x⟩P/P) · (⟨y⟩P/P) = (⟨y⟩P/P) · (⟨x⟩P/P)$. Since $G = ⟨x, y⟩$, it follows that $G = ⟨x⟩⟨y⟩P$. Hence $|\pi(G)| = 3$. (iii) is proved.

Next, we study the structure of the minimal non-BT–group G.

Theorem 4.2 Suppose G is a minimal non-BT–group.

1. If $|\pi(G)| = 2$, then G is a minimal non-PST–group.

2. If $|\pi(G)| = 3$, then $G = P × (Q × R)$, where P is a normal abelian p–Sylow subgroup (p is odd), $Q = ⟨a⟩$, $R = ⟨b⟩$ are cyclic q–Sylow subgroup and r–Sylow subgroup, respectively. The elements of G induce power automorphisms in P, and for any $g ∈ G$, $[a^g, b^g] = 1$, $[a^g, b^r] = 1$.

Proof. (1) Suppose that $|\pi(G)| = 2$. By Corollary 3.3, we have that each proper subgroup of G is a PST–group. Clearly, the nilpotent residual G^N of G is nontrivial. So, if G is a PST–group, then by Corollary 3.4, G is an BT–group, which is a contradiction. Hence, G is a minimal non-PST–group.

By the proof of Theorem 4.1, we have that $G = ⟨x, y⟩ = P⟨x⟩⟨y⟩$, where P is the normal p–Sylow subgroup, $⟨x⟩$, $⟨y⟩$ are cyclic q–Sylow subgroup and r–Sylow subgroup, respectively, for some prime $p, q, r ∈ \pi(G)$ and $⟨x⟩$ and $⟨y⟩$ don’t permute.

Since G is a minimal non-BT–group, it follows from Corollary 3.3 that each proper subgroup of G is PST–group. By [9, Theorem 1], we have that G is a PST–group. Let $L = G^N$ be the nilpotent residual of G. By [1], L is an abelian normal Hall subgroup of odd order and the elements of G induce power automorphisms in L.

Suppose that $q || L$. Since L is a Hall subgroup of G, we have that $⟨x⟩ ≤ L$. So $⟨x⟩ ≤ G$ and $G = ⟨x, y⟩ = ⟨x⟩⟨y⟩$, a contradiction. Hence $q ∤ |L|$. Similarly, $r ∤ |L|$.

If $L = 1$, then G is nilpotent and G is an BT–group, a contradiction.
Finite groups

Hence $L \neq 1$. Since $q \nmid |L|$, $r \nmid |L|$ and L is a Hall subgroup of G, it follows that $L = P$ is abelian and the elements of G induce power automorphisms in P.

Let H be a p'-Hall subgroup of G such that $\langle x\rangle \leq H$. Then there exists $g_0 \in G$ such that $\langle y \rangle^{g_0} \leq H$. Clearly, $H = \langle x \rangle \langle y \rangle^{g_0}$. Since $G/P \cong H$ is nilpotent, $H = \langle x \rangle \times \langle y \rangle^{g_0}$. Let $x = a$, $y^{g_0} = b$, $Q = \langle a \rangle$, $R = \langle b \rangle$, then $G = P \rtimes (Q \times R)$.

Let $M_1 = P\langle a^q \rangle \langle b \rangle$ and $M_2 = P\langle a \rangle \langle b^r \rangle$, then M_1, M_2 are proper normal subgroups of G. So M_1, M_2 are BT-groups. By $L = P$, we have that the nilpotent residual $M_i^N \leq P$, $i = 1, 2$. Since M_i is an BT-group, M_i^N is Hall subgroup of M_i. Hence $M_i^N = 1$ or P. If $M_1^N = 1$, then M_1 is nilpotent and $\langle b \rangle$ is the normal q-subgroup of M_1 and $\langle b \rangle \trianglelefteq G$, then this will imply that $\langle x \rangle$ and $\langle y \rangle$ permute, a contradiction. Hence $M_1^N \neq 1$. Similarly, $M_2^N \neq 1$. So $M_1^N = M_2^N = P$. By $M_1 \leq G$, $M_2 \leq G$, we have that $\langle b^g \rangle \leq M_1$, $\langle a^q \rangle \leq M_2$ for any $g \in G$. Applying Theorem 3.1, $[a^q, b^g] = 1$ and $[a^q, b^r] = 1$. The proof is complete.

References

Received: September 14, 2007