Restrict Edge-Connectivity of Circular Graphs

Xiangjuan Yao^{1,2} and Dunwei Gong²

¹ College of Science, China University of Mining and Technology Xuzhou, Jiangsu, 221008, P.R. China yxjcumt@126.com

² School of Information and Electronics Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, P.R. China

Abstract

An edge cut X of G is restrict if G-X is disconnected and has no trivial component. The minimum k such that G has a restrict k-edge cut is called the restrict edge-connectivity of G. Let n and i_1, i_2, \dots, i_k are positive integers such that $n > i_1 > i_2 > \dots > i_k$. A circular graph $G = C(n; i_1, i_2, \dots, i_k)$ of order n is one graph spanned by a n-cycle $C_n = (0, 1, \dots, n, 1)$ together with the chords $(i, j) \in E$ if and only if $i + i_k \equiv j \pmod{n}$. The cycle C_n is the principal cycle of $C(n; i_1, i_2, \dots, i_k)$. In this paper, we prove that the restrict edge connectivity of C(n, n/2, k) is 8.

Mathematics Subject Classification: 022

Keywords: Circular graph, Restrict edge cut, Restrict edge-connectivity

1 Intruduction

Throughout this paper we only consider simple graphs and notions mentioned without specification can be found in Bondy's book[1]. In particular, $\kappa(G)$ and $\kappa'(G)$ represent the connectivity and edge-connectivity of a graph G. An edge cut X of G is restrict if G-X is disconnected and has no trivial component. For an integer k>0, a graph G is restrict k-edge-connected if G does not have an restrict edge cut Y with |Y| < k. We call the minimum k such that G has a restrict k-edge cut the restrict edge-connectivity of G, denote by $\lambda'(G)$. We call a minimum restrict edge cut of G a restrict set. It can be easily seen that if H is a restrict set of G, then $\omega(G-H)=2$. And we will call the component of G-H with less vertex number the restrict subgraph of H.

Let n and i_1, i_2, \dots, i_k are positive integers such that $n > i_1 > i_2 > \dots > i_k$. A circular graph $G = C(n; i_1, i_2, \dots, i_k)$ of order n is one graph spanned by a n-cycle $C_n = (0, 1, \dots, n, 1)$ together with the chords $(i, j) \in E$ if and only if $i + i_k \equiv j \pmod{n}$. The cycle C_n is the principal cycle of $C(n; i_1, i_2, \dots, i_k)$. It is clear that every nontrivial circular graph is a 3-connected, of course 3-edge-connected nonplanar graph. Many characteristics of circular graphs have been studied, for example, the Hamiltonian, connectivity, edge coloring and so on(See reference [2], [3]). The discussion in this paper is restrict edge-connectivity of C(n; n/2, k, 1). The following is a known result that will be used in our proof.

Lemma 1.1 $/4/\kappa(C(n; n/2, k, 1)) = 5.$

2 Main result

For the sake of brevity, we have C(n; n/2, k, 1) simplified as Cr.

Theorem 2.1 $\lambda'(C(n; n/2, k, 1)) = 8.$

Proof: Firstly we will proof $\lambda'(Cr) \leq 8$. Let $H = \{(0, n/2), (0, n-k), (0; n-1), (0, k), (1, n/2+1), (1, n-k+1), (1, 2), (1, 1+k)\}$, then we know Cr - H is disconnected, and the two components of Cr - H are respectively $G_1 = Cr[\{0, 1\}]$ and $G_2 = Cr[\{2, 3, \dots n-1\}]$. So H is an restrict edge cut of Cr. Thus

$$\lambda'(Cr) \le 8. \tag{1}$$

On the other hand, we will proof $\lambda'(Cr) \geq 8$. Let H_m is an restrict set of Cr with m elements, and G^* is the restrict subgraph of H_m .

Case 1: The elements of $V(G^*)$ is an arithmetic series with tolerance 1(in the sense modulo n). Without loss of generality, we will suppose that $V(G^*) = \{1, 2, \dots, m\}$. By Lemma 1.1 and the definition, we know C(n; n/2, k, 1) = 5 and each vertex is incident with five edges.

Subcase 1: $m \le k$. Then the restrict edge cut $H_m = \{(0,1), (m,m+1), (1,1-k), \cdots, (m,m-k), (1,1+k), \cdots, (m,m+k), (1,1+n/2), \cdots, (m,m+n/2)\}.$

So

$$|H_m| = |H_2| + 3(m-2).$$

Thus $H_m \geq 8$.

Subcase 2: m > k. Then the restrict edge cut

 $H_m = \{(0,1), (m,m+1), (1,1-k), \cdots, (k,k-k), (m-k+1,m+1), \cdots, (m,m+k), (1,1+n/2), \cdots, (m,m+n/2)\}.$

So

$$|H_m| = m + 2k + 2 \ge 3k + 3.$$

Because $k \geq 2$, we get $H_m \geq 8$.

Case 2: $V(G^*) = V_1 \cup V_2$, the elements of V_1, V_2 respectively are an arithmetic series with tolerance 1, but $V(G^*)$ is not(mode n).

Let $|V_1| = m_1, |V_2| = m_2$, then we can easily know $|N(V_1)| \ge m_1 + 4, |N(H_2)| \ge m_2 + 4$. So $\sum_{v \in N(V(G^*))} d(v) \ge 8$, thus $H_m \ge 8$.

Case 3: $V(G^* = V_1 \cup V_2 \cup V_3$, the elements of V_1, V_2, V_3 respectively are an arithmetic series with tolerance 1, but $V(G^*)$ and $V_i \cup V_i$ are not(mode n).

Let $|V_i| = m_i, i = 1, 2, 3$, then we can easily know $N(V_i) \ge m_i + 4$. So $\sum_{v \in N(H_m)} d(v) \ge 8$, thus $H_m \ge 8$.

Case 4: $V(G^*) = V_1 \cup V_2 \cup \cdots \cup V_t, t > 3$, the elements of $V_i, i = 1, \cdots t$ respectively are an arithmetic series with tolerance 1, but $V(G^*)$ or $V_i \cup V_j$ is not(mode n).

Let $V_1 = (i_1, i_1 + 1, \dots, i_1 + m_1), V_2 = (i_2, i_2 + 1, \dots, i_2 + m_2), \dots, V_t = (i_t, i_t + 1, \dots, i_t + m_t),$ then $(i_j, i_j - 1), (i_j + m_j, i_j + m_j + 1) \in H_m, j = 1, 2, \dots, t.$ Because t > 3, so $H_m \ge 8$.

In any case, we obtain:

$$\lambda'(Cr) \ge 8. \tag{2}$$

Combine (1) and (2), we have $\lambda'(Cr) = 8$.

References

- [1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. American Elsevier, New York, 1976.
- [2] Esfahanina A HHakimi S L, On computing a edge-connectivity of a graph, Information Processing Letters, 27(1988): 195-199.
- [3] Esfahanian A H, Generalized measures offault tolerance with application to n-cube networks, Trans. Comput, 198938(11): 1586-1591.
- [4] Zhai Xiaohon, The connectivity of circular graph $C_n < 1, k, n/2 >$, Journal of Kunming Science and Technology, 24(1999): 83-87.

Received: June 12, 2007