Cofinitely δ-Supplemented and Cofinitely δ-Semiperfect Modules

Khaled Al-Takhman

Mathematics Department, Birzeit University
Birzeit, P.O. Box 14, Palestine
takhman@birzeit.edu

Abstract

In this work, we prove that an R-module M is cofinitely δ-supplemented (i.e. each cofinite submodule of M has a δ-supplement) if and only if every maximal submodule of M has a δ-supplement. An R-module M is called cofinitely δ-semiperfect if each finitely generated factor module of M has a projective δ-cover, we prove that this is equivalent to the existence of a δ-supplement, which is a direct summand of M, for each cofinite submodule of M. Cofinitely δ-lifting modules are introduced and characterized. We also give new characterizations of δ-semiperfect rings in terms of these concepts. Some examples are given at the end of this article.

Mathematics Subject Classification: 16L30, 16E50

Keywords: cofinitely δ-supplemented, cofinitely δ-semiperfect modules, projective δ-cover, δ-semiperfect rings

1 Introduction And Preliminary Notes

Throughout this paper R is an associative ring with unity and all modules are unitary left R-modules. A submodule K of a module M is denoted by $K \subseteq M$. Let M be a module, $K \subseteq M$ is called small in M (denoted $K \ll M$) if for every $N \subseteq M$, the equality $N + K = M$ implies $N = M$. A submodule $U \subseteq M$ is called a supplement of $K \subseteq M$, if $M = K + U$ and $K \cap U \ll U$.

Zhou [12] introduced the concept of ”δ-small submodule” as a generalization of small submodules. Let $K \subseteq M$, K is called δ-small in M, denoted by $K \ll_\delta M$, if whenever $M = N + K$ and M/N is singular, we have $M = N$. The sum of all δ-small submodules of a module M is denoted by
δ(M), which defines a preradical on the category of \(R \)-modules. Zhou [12] proved that \(\delta(M) \) is the reject in \(M \) of the class of all singular simple modules, i.e. \(\delta(M) = \cap \{ N \subseteq M : M/N \text{ is singular} \} \).

We collect basic properties of \(\delta \)-small submodules in the following lemma which is taken from [12, Lemma 1.2 and 1.3]

Lemma 1.1. Let \(M \) be an \(R \)-module, \(N, L \subseteq M \)

1. If \(N \ll_{\delta} M \) and \(M = X + N \), then \(M = X \oplus Y \) for a projective semisimple submodule \(Y \) of \(M \) and \(Y \subseteq N \).

2. If \(N \ll_{\delta} M \) and \(f : M \rightarrow H \) is a homomorphism, then \(f(N) \ll_{\delta} H \); In particular, if \(K \ll_{\delta} N \subseteq M \), then \(K \ll_{\delta} M \).

3. If \(K_1 \ll_{\delta} X_1 \subseteq M \) and \(K_2 \ll_{\delta} X_2 \subseteq M \), then \(K_1 + K_2 \ll_{\delta} X_1 + X_2 \).

4. If \(K \subseteq N \subseteq M \), \(K \ll_{\delta} M \) and \(N \) is a direct summand of \(M \), then \(K \ll_{\delta} N \).

In [8] the concepts of \(\delta \)-supplemented and \(\delta \)-lifting modules were defined as generalizations of supplemented and lifting modules. Let \(K, N \subseteq M \), \(N \) is called a \(\delta \)-supplement of \(K \) in \(M \) if \(M = K + N \) and \(K \cap N \ll_{\delta} N \). \(M \) is called \(\delta \)-supplemented if every submodule of \(M \) has a \(\delta \)-supplement in \(M \), and it is called \(\delta \)-lifting if for every submodule \(K \subseteq M \), there exists a decomposition \(M = M_1 \oplus M_2 \) such that \(M_1 \subseteq K \) and \(K \cap M_2 \ll_{\delta} M_2 \). For a projective module \(P \), the author proved that the two concepts are equivalent.

An epimorphism \(f : P \rightarrow N \) is called a \(\delta \)-cover of \(N \) if \(\text{Ker}(f) \ll_{\delta} P \) and if moreover \(P \) is projective, then it is called a projective \(\delta \)-cover. In [12], a ring \(R \) is called \(\delta \)-semiperfect if every simple \(R \)-module has a projective \(\delta \)-cover. In [2] a module \(M \) is called \(\delta \)-semiperfect, if every factor module of \(M \) has a projective \(\delta \)-cover. For projective modules a similar result to that of Kasch and Mares [7] was obtained in [2], which states that a projective module is \(\delta \)-semiperfect if and only if it is \(\delta \)-supplemented.

A submodule \(N \) of a module \(M \) is called cofinite, if \(M/N \) is finitely generated. In [1] a module \(M \) is called cofinitely supplemented module if every cofinite submodule of \(M \) has a supplement. In [3], a module \(M \) is called \(\oplus \)-cofinitely supplemented, if every cofinite submodule of \(M \) has a supplement that is a direct summand of \(M \). Semiperfect rings were characterized in [1, 3] using these notions.

As a generalization of semiperfect modules, Çalişici and Pancar [4] introduced the notion of cofinitely semiperfect modules. A module \(M \) is called cofinitely semiperfect, if every factor module of \(M \) by a cofinite submodule has a projective cover. They proved that a projective module \(P \) is cofinitely semiperfect if and only if \(P \) is \(\oplus \)-cofinitely supplemented.
In this work, we introduce and study the notions of cofinitely δ-supplemented and cofinitely δ-semiperfect modules. A module M is called cofinitely δ-supplemented, briefly cof-δ-supplemented, if each cofinite submodule of M has a δ-supplement. M is called \oplus-cofinitely δ-supplemented, briefly \oplus-cof-δ-supplemented, if every cofinite submodule of M has a δ-supplement that is a direct summand of M. In section 2, we give some properties of these modules, among other things we show that an arbitrary sum of cof-δ-supplemented modules is cof-δ-supplemented. We also show that a module M is cof-δ-supplemented if and only if every maximal submodule of M has a δ-supplement.

A module M is called cofinitely δ-semiperfect, briefly cof-δ-semiperfect, if every factor module of M by a cofinite submodule has a projective δ-cover. A module M is called cofinitely δ-lifting, if for every cofinite submodule $N \subseteq M$, there exists a decomposition $M = X \oplus Y$ such that $X \subseteq N$ and $Y \cap N \ll_\delta Y$.

We start section 3 by giving some properties of cof-δ-semiperfect modules, after that we characterize these modules. We prove that a projective module is cof-δ-semiperfect if and only if it is \oplus-cofinitely δ-supplemented if and only if it is cofinitely δ-lifting. We also characterize cof-δ-semiperfect modules in the general case, by showing that a module is cofinitely δ-semiperfect if and only if it is δ-supplemented by δ-supplements that have projective δ-cover, this result is analogous to a result of Fieldhouse [5] for semiperfect modules, a result of Wang and Sun [10] for cofinitely semiperfect modules. We also characterize δ-semiperfect rings using the notions mentioned above. We close this section by some examples to separate the above introduced notions.

2 Cofinitely δ-Supplemented Modules

In this section we define and study cofinitely δ-supplemented modules. Let M be an R-module, a submodule $U \subseteq M$ is called cofinite in M if the factor module M/U is finitely generated. Recall that a submodule $N \subseteq M$ is called a δ-supplement of $K \subseteq M$, if $M = N + K$ and $N \cap K \ll_\delta N$.

Definition 2.1. An R-module M is called cofinitely δ-supplemented, briefly cof-δ-supplemented, if each cofinite submodule of M has a δ-supplement in M. M is called \oplus-cofinitely δ-supplemented, briefly \oplus-cof-δ-supplemented, if every cofinite submodule of M has a δ-supplement, which is a direct summand of M.

It is clear from definitions, that a δ-supplemented module M is cof-δ-supplemented, and if M is finitely generated, then the converse also holds. Next we give some properties of cof-δ-supplemented modules.

Proposition 2.2. Let M be a cof-δ-supplemented module, then any factor module of M is cof-δ-supplemented. Hence, homomorphic images and direct summands of M are also cof-δ-supplemented.
Proof. Assume \(M \) is cof-\(\delta \)-supplemented, and let \(N \subseteq M \). Any cofinite submodule of \(M/N \) is of the form \(U/N \), where \(U \) is cofinite in \(M \). So, there exists \(K \subseteq M \), such that \(M = K + U \) and \(K \cap U \ll_{\delta} K \). Thus \(M/N = U/N + (K + N)/N \), and \(U/N \cap (K + N)/N = U \cap (K + N)/N = (N + (K \cap U))/N \ll_{\delta} (K + N)/N \). Hence, \(M/N \) is cof-\(\delta \)-supplemented.

Lemma 2.3. Let \(M \) be an \(R \)-module, \(N, K, X \subseteq M \) such that \(X \ll_{\delta} M \). If \(K \) is a \(\delta \)-supplement of \(N \) in \(M \), then \(K \) is a \(\delta \)-supplement of \(N + X \) in \(M \). If \(N + X \) has a \(\delta \)-supplement \(L \) in \(M \), then there exists a projective semisimple direct summand \(Y \) of \(M \) such that \(L + Y \) is a \(\delta \)-supplement of \(N \) in \(M \).

Proof. Assume \(K \) is a \(\delta \)-supplement of \(N \) in \(M \). Thus, \(M = N + K \) and \(N \cap K \ll_{\delta} K \). We will show that \(K \) is a \(\delta \)-supplement of \(N + X \) in \(M \).

It is clear that, \(M = K + N + X \). To show that \(K \cap (N + X) \ll_{\delta} K \), assume \(K = S + K \cap (N + X) \), where \(K/S \) is singular. Now \(M = K + N = S + K \cap (N + X) + N = K \cap (S + N + X) + N = S + N + X \), and \(M/(S + N) \) is singular, since \(M/(S + N) \cong K/(S + (K \cap N)) \). But \(X \ll_{\delta} M \), thus \(M = S + N \). Since \(U/S \) is singular and \(M = S + N = K + N \), then \(K = S \).

Hence \(K \cap (N + X) \ll_{\delta} K \). Therefor, \(K \) is a \(\delta \)-supplement of \(N + X \) in \(M \).

Conversely, assume \(L \) is a \(\delta \)-supplement of \(N + X \) in \(M \). Then \(M = L + N + X \) and \(L \cap (N + X) \ll_{\delta} L \). Since \(X \ll_{\delta} M \), by lemma 1.1, there exists a projective, semisimple submodule \(Y \) of \(M \), such that \(Y \subseteq X \) and \(M = (L + N) \oplus Y \). We will show that \(L + Y \) is a \(\delta \)-supplement of \(N \) in \(M \).

First, we have \(M = L + Y + N \) and \(N \cap (L + Y) \subseteq L \cap (N + Y) + Y \cap (N + L) = L \cap (N + Y) \subseteq L \cap (N + X) \ll_{\delta} L \), hence \(N \cap (L + Y) \ll_{\delta} L + Y \) as required.

To show that arbitrary sum of cof-\(\delta \)-supplemented modules is cof-\(\delta \)-supplemented, we need the following standard lemma

Lemma 2.4. Let \(L, U \) be submodules of a module \(M \) such that \(L \) is cof-\(\delta \)-supplemented, \(U \) is cofinite in \(M \) and \(L + U \) has a \(\delta \)-supplement \(K \) in \(M \). Then \(L \cap (K + U) \) has a \(\delta \)-supplement \(K \) in \(L \). Moreover, \(K + X \) is \(\delta \)-supplement of \(U \) in \(M \).

Proof. Let \(K \) a \(\delta \)-supplement of \(L + U \) in \(M \). Thus \(M + K + L + U \) and \(K \cap (L + U) \ll_{\delta} K \). Now \(L/L \cap (K + U) \cong (M/U)/(K + U)/U \), which is finitely generated, hence \(L \cap (K + U) \) is cofinite in \(L \). Since \(L \) is cof-\(\delta \)-supplemented, there exists \(X \subseteq L \) a \(\delta \)-supplement of \(L \cap (K + U) \) in \(L \). Thus \(L = X + L \cap (K + U) \) and \(X \cap L \cap (K + U) = X \cap (K + U) \ll_{\delta} X \). To show that \(K + X \) is a \(\delta \)-supplement of \(U \) in \(M \), we have \(M = K + L + U = K + X + L \cap (K + U) + U = K + X + U \), and \(U \cap (K + X) \subseteq K \cap (U + X) + X \cap (K + U) \subseteq K \cap (U + L) + X \cap (K + U) \ll_{\delta} K + X \). Therefor, \(K + X \) is a \(\delta \)-supplement of \(U \) in \(M \).
Proposition 2.5. An arbitrary sum of cof-δ-supplemented modules is cof-δ-supplemented.

Proof. Suppose that $\{M_i\}_{i \in I}$ is a family of cofinitely δ-supplemented modules, and $M = \sum_{i \in I} M_i$. Let U be a cofinite submodule of M, so $M = U + M_{i_1} + \cdots + M_{i_n}$ for some $n \in \mathbb{N}, i_k \in I$. Applying lemma 2.4 we see by induction, that U has a δ-supplement in M.

If M is a δ-supplemented module, then $M/\delta(M)$ is semisimple (see [2]). Next we prove an analogue for this result

Proposition 2.6. Let M be a cofinitely δ-supplemented module, then every cofinite submodule of $M/\delta(M)$ is a direct summand.

Proof. Assume M is cof-δ-supplemented. Every cofinite submodule of $M/\delta(M)$ has the form $U/\delta(M)$, where U is a cofinite submodule of M and $\delta(M) \subseteq U$. By assumption, there exists $K \subseteq M$ such that $M = K + U$ and $K \cap U \ll_{\delta} K$, hence $K \cap U \subseteq \delta(M)$. Since $U \cap (K + \delta(M)) = \delta(M) + (U \cap K) = \delta(M)$, thus $M/\delta(M) = (U + K)/\delta(M) = U/\delta(M) \oplus (K + \delta(M))/\delta(M)$.

From this, the following is clear

Corollary 2.7. Let M be a cofinitely δ-supplemented module, then $M/\delta(M)$ is \oplus-cofinitely δ-supplemented.

Now we are going to prove that a module M is cofinitely δ-supplemented if and only if every maximal submodule of M has a δ-supplement in M. To do this we need the following lemma

Lemma 2.8. Let U, K be submodules of an R-module M. If K is a δ-supplement of a maximal submodule of M and $K + U$ has a δ-supplement in M, then U has a δ-supplement in M.

Proof. Let K be a δ-supplement of a maximal submodule $Q \subseteq M$, and X a δ-supplement of $K + U$ in M. Thus, $M = X + K + U = K + Q$, $X \cap (K + U) \ll_{\delta} X$ and $K \cap Q \ll_{\delta} K$. Next we consider $K \cap (X + U)$.

If $K \cap (X + U) \subseteq K \cap Q$. We will show that $X + K$ is a δ-supplement of U in M. It is clear that $M = X + K + U$, and $U \cap (X + K) \subseteq X \cap (U + K) + K \cap (U + X)$. Since $X \cap (U + K) \ll_{\delta} X$ and $K \cap (U + X) \subseteq K \cap Q \ll_{\delta} K$, we get, by lemma 1.1, that $U \cap (X + K) \ll_{\delta} X + K$, thus $X + K$ is a δ-supplement of X in M.

Now, assume that $K \cap (X + U) \nsubseteq K \cap Q$. Since $K/K \cap Q = (K + Q)/Q = M/Q$, then $K \cap Q$ is maximal in K, thus $K = K \cap Q + (K \cap (X + U))$. By lemma 1.1, and since $K \cap Q \ll_{\delta} K$, there exists a projective semisimple submodule Y of M such that $K = Y \oplus (K \cap (X + U))$, and $Y \subseteq K \cap Q$. We will show that $X + Y$ is a δ-supplement of U in M. We have $M = X + K \cap (X + U) + Y + U = X + Y + U.$
Since \(X \cap (U + Y) \subseteq X \cap (U + K) \ll_\delta X \), then \(X \cap (U + Y) \ll_\delta X \). Since \(Y \cap (U + X) \subseteq Y \subseteq K \cap Q \ll_\delta K \), and \(Y \) is a direct summand in \(K \), then, by lemma 1.1, \(X \cap (U + X) + Y \sim (U + X) \ll_\delta X + Y \). Now \(U \cap (X + Y) \subseteq X \cap (U + Y) + Y \cap (U + X) \), thus \(U \cap (X + Y) \ll_\delta X + Y \). Hence, \(X + Y \) is a \(\delta \)-supplement of \(U \) in \(M \). In both cases, \(U \) has a \(\delta \)-supplement in \(M \).

For a module \(M \), let \(\text{Cof}_\delta(M) \) be the sum of all submodules of \(M \) that are \(\delta \)-supplements of maximal submodules of \(M \), and \(\text{Cof}_\delta(M) = 0 \), if there is no such submodule.

Theorem 2.9. Let \(M \) be an \(R \)-module, then the following are equivalent:

1. \(M \) is \(\text{cof-}\delta \)-supplemented;
2. Every maximal submodule of \(M \) has a \(\delta \)-supplement in \(M \);
3. The module \(M/\text{Cof}_\delta(M) \) has no maximal submodules.

Proof. (1) \(\Rightarrow \) (2). Clear.

(2) \(\Rightarrow \) (3). Assume \(M/\text{Cof}_\delta(M) \) has a maximal submodule \(Q/\text{Cof}_\delta(M) \), then \(Q \) is maximal in \(M \) and \(\text{Cof}_\delta(M) \subseteq Q \). By assumption, \(Q \) has a \(\delta \)-supplement \(K \) in \(M \), then \(K \subseteq \text{Cof}_\delta(M) \subseteq Q \). Thus, \(M = K + Q = Q \), a contradiction. Hence \(M/\text{Cof}_\delta(M) \) has no maximal submodules.

(3) \(\Rightarrow \) (1). Let \(U \) be a cofinite submodule of \(M \), then \(U + \text{Cof}_\delta(M) \) is also cofinite in \(M \). Then \(U + \text{Cof}_\delta(M) = M \), otherwise \(M/\text{Cof}_\delta(M) \) would have a maximal submodule. Since \(M/U \) is finitely generated and \(U + \text{Cof}_\delta(M) = M \), there exist a finite number of submodules \(K_1, K_2, \ldots, K_n \) of \(M \) that are \(\delta \)-supplements of maximal submodules of \(M \), such that \(M = U + K_1 + K_2 + \cdots + K_n \). By lemma 2.8, since \(M = (U + K_1 + K_2 + \cdots + K_{n-1}) + K_n \) has 0 as a \(\delta \)-supplement in \(M \), \(U + K_1 + K_2 + \cdots + K_{n-1} \) has a \(\delta \)-supplement in \(M \). By repeated use of lemma 2.8, \(U \) has a \(\delta \)-supplement in \(M \). Hence \(M \) is \(\text{cof-}\delta \)-supplemented. \(\square \)

Example 2.10. The \(\mathbb{Z} \)-module \(\mathbb{Q} \) of rational integers has no maximal submodules, so \(\mathbb{Q} \) is \(\oplus \)-cofinitely \(\delta \)-supplemented, and hence cofinitely \(\delta \)-supplemented. But \(\mathbb{Q} \) is not \(\delta \)-supplemented.

3 Cofinitely \(\delta \)-semiperfect modules

As a proper generalization of semiperfect modules, Calisici and Pancar [4] introduced and studied the notion of cofinitely semiperfect modules. An \(R \)-module \(M \) is called cofinitely semiperfect if every finitely generated factor module of \(M \) has a projective cover. In this section we define cofinitely \(\delta \)-semiperfect modules and study their basic properties. We also characterize these modules using the notion of cof-\(\delta \)-supplemented modules for the projective and the not necessarily projective modules.
Let M be an R-module. Recall that a module N with an epimorphism $f : N \rightarrow M$ is called a δ-cover of M, provided that $\text{Ker}(f) \ll_{\delta} N$. If N is also projective, then it is called a projective δ-cover of M.

Definition 3.1. An R-module M is called cofinitely δ-semiperfect, briefly cof-δ-semiperfect, if every factor module of M by a cofinite submodule has a projective δ-cover.

It is clear from the definition, that δ-semiperfect, and hence semiperfect, modules are cof-δ-semiperfect (see [2]). It is also clear that finitely generated cof-δ-semiperfect modules are δ-semiperfect. In general cof-δ-semiperfect modules need not be δ-semiperfect (see the examples at the end of this work). The following lemma is of interest in this work, it is proved in [?], we include its proof here for the sake of completeness.

Lemma 3.2. Let M, N, P be modules. Given homomorphisms $f : P \rightarrow M$, $g : P \rightarrow N$ and $h : N \rightarrow M$ such that $hg = f$, then

1. f is an epimorphism if and only if $N = \text{Ker}(h) + g(P)$.
2. f is a δ-cover if and only if $g(P)$ is a δ-supplement of $\text{Ker}(h)$ in N and $\text{Ker}(g) \ll_{\delta} P$.

Proof. 1. This is well known.

2. Assume f is a δ-cover. By (1), it follows that $N = \text{Ker}(h) + \text{Im}(g)$. It is easy to show that $g(\text{Ker}(f)) = \text{Ker}(h) \cap \text{Im}(g)$. Since $\text{Ker}(f) \ll_{\delta} P$, it follows from lemma 1.1 that $g(\text{Ker}(f)) \ll_{\delta} \text{Im}(g)$, hence $\text{Im}(g)$ is a δ-supplement of $\text{Ker}(h)$ in N. To show that $\text{Ker}(g) \ll_{\delta} P$, we know that $\text{Ker}(g) \subseteq \text{Ker}(f) \ll_{\delta} P$, which implies that $\text{Ker}(g) \ll_{\delta} P$. For the other direction assume that $\text{Im}(g)$ is a δ-supplement of $\text{Ker}(h)$ in N and $\text{Ker}(g) \ll_{\delta} P$, so $N = \text{Im}(g) + \text{Ker}(h)$ and $\text{Im}(g) \cap \text{Ker}(h) \ll_{\delta} \text{Im}(g)$. From (1) it follows that f is an epimorphism. To show $\text{Ker}(f) \ll_{\delta} P$, assume $\text{Ker}(f) + S = P$, and P/S is singular. So $g(P) = g(\text{Ker}(f)) + g(S)$, but $g(\text{Ker}(f)) = \text{Ker}(h) \cap g(P)$, hence $\text{Ker}(h) \cap g(P) + g(S) = g(P)$. Now since $g(P)/g(S)$ is singular, being a homomorphic image of a singular module, and $\text{Ker}(h) \cap g(P) \ll_{\delta} g(P)$, we get $g(P) = g(S)$, and so, $P = S + \text{Ker}(g)$, but by assumption $\text{Ker}(g) \ll_{\delta} P$ and P/S is singular, so $P = S$, hence $\text{Ker}(f) \ll_{\delta} P$ as required.

Theorem 3.3. Let M be a cof-δ-semiperfect module, then

1. M is cof-δ-supplemented,
2. any factor module of M is cof-δ-semiperfect, hence any homomorphic image and any direct summand of M is cof-δ-semiperfect.
Proof. Assume M is a cof-δ-semiperfect module.

1. Let $U \subseteq M$ be cofinite. By assumption, there exists a projective δ-cover $f : P \to M/U$. Let $\pi : M \to M/U$ be the canonical map, since P is projective, there exists a homomorphism $g : P \to M$ such that $\pi g = f$. By lemma 3.2, $g(P)$ is a δ-supplement of U in M.

2. Let $f : M \to N$ be an epimorphism, and $U \subseteq N$ be a cofinite submodule. Then we have, $M/f^{-1}(U) \cong (M/Ker(f))/(f^{-1}(U)/Ker(f)) \cong N/U$, hence $f^{-1}(U)$ is cofinite in M. By assumption and the above isomorphism, N/U has a projective δ-cover. Therefore, N is cofinitely δ-semiperfect.

Let N be a submodule of an R-module M, N is said to have ample δ-supplements in M if every submodule L of M with $M = N + L$ contains a δ-supplement of N in M. M is called amply cofinitely δ-supplemented, if every cofinite submodule of M has ample $δ$-supplements in M.

Next we characterize cof-δ-semiperfect modules using the concepts of (amply) cofinitely $δ$-supplemented modules.

Theorem 3.4. Let M be an R-module, then the following are equivalent

(1) M is cof-δ-semiperfect.

(2) M is amply cofinitely δ-supplemented by δ-supplements, which have projective δ-covers.

(3) M is cofinitely δ-supplemented by δ-supplements which have projective δ-covers.

Proof. (1) \Rightarrow (2). Let $M = U + Y$, U is a cofinite submodule of M. By assumption, there exists a projective δ-cover $f : P \to M/U$. Let $\pi : Y \to Y/U \cap Y = M/U$ be the canonical epimorphism. Since P is projective, there exists a homomorphism $g : P \to Y$, such that $\pi g = f$. By lemma 3.2, $g(P)$ is a δ-supplement of Ker(π) = $U \cap Y$ in Y, and Ker(π) $\ll_δ P$. Thus, $Y = g(P) + U \cap Y$, and $g(P) \cap U \cap Y = g(P) \cap U \ll_δ g(P)$. Hence, $M = U + Y = U + g(P) + U \cap Y = U + g(P)$. From this it follows that $g(P)$ is a $δ$-supplement of U in M and $g(P) \subseteq Y$. It is clear that, $g : P \to g(P)$ is a projective δ-cover of $g(P)$.

(2) \Rightarrow (3). This is clear.

(3) \Rightarrow (1). Let U be a cofinite submodule of M. By assumption, U has a δ-supplement K in M and K has a projective δ-cover $f : P \to K$. Since $U \cap K \ll_δ K$, then the canonical map $\pi : K \to K/U \cap K = M/U$ is a δ-cover of M/U. The composition $\alpha = \pi f : P \to M/U$ is a projective δ-cover of M/U. Therefore, M is cofinitely $δ$-supplemented. □
An R-module M is called δ-lifting (see [8]), if for every submodule $N \subseteq M$, there exists a decomposition $M = A \oplus B$, such that $A \subseteq N$ and $N \cap B \ll_\delta B$. We call an R-module M cofinitely δ-lifting, if for every cofinite submodule $U \subseteq M$, there exists a decomposition $M = X \oplus Y$ such that $X \subseteq U$ and $U \cap Y \ll_\delta Y$. Similar to the characterizations of δ-lifting modules we give here some characterizations of cofinitely δ-lifting modules, (see [8] and [11, 41.11])

Theorem 3.5. For an R-module M, the following are equivalent

1. M is cofinitely δ-lifting:
2. Every cofinite submodule $U \subseteq M$ has a δ-supplement V in M such that $U \cap V$ is a direct summand of U;
3. Every cofinite submodule $U \subseteq M$ can be written as $U = A \oplus B$ such that A is a direct summand of M and $B \ll_\delta M$;
4. For every cofinite submodule $U \subseteq M$, there exists a direct summand $X \subseteq M$ such that $X \subseteq U$ and $U/X \ll_\delta M/X$;
5. For every cofinite submodule $U \subseteq M$, there exists a direct summand X of M and a submodule Y of M with $X \subseteq U$, $U = X + Y$ and $Y \ll_\delta M$;
6. For every cofinite submodule $U \subseteq M$, there exists an idempotent $e \in \text{End}(M)$ with $e(M) \subseteq U$ and $(1 - e)(U) \ll_\delta (1 - e)(M)$.

Proof. (1) \(\Rightarrow\) (2). Let $U \subseteq M$ be cofinite. By assumption, $M = X \oplus Y$, $X \subseteq U$ and $U \cap Y \ll_\delta Y$. Thus Y is a δ-supplement of U in M and $U = U \cap (X \oplus Y) = X \oplus (U \cap Y)$.

(2) \(\Rightarrow\) (3). Let U be cofinite in M. By assumption, there exists $V \subseteq M$, $Y \subseteq U$, such that $M = U + V$, $U \cap V \ll_\delta V$ and $U \cap V + Y = U$. Thus

$M = U + V = U \cap V + V = Y + V$ and $Y \cap V = 0$, hence $M = Y \oplus V$.

(3) \(\Rightarrow\) (4). Let U be cofinite in M. By assumption, $U = A \oplus B$, where A is a direct summand of M and $B \ll_\delta M$. Let $\pi : M \rightarrow M/A$ be the canonical map. Since $B \ll_\delta M$, then $\pi(B) \ll_\delta M/A$, so $U/A \ll_\delta M/A$.

(4) \(\Rightarrow\) (5). Let U be cofinite in M. By assumption, $M = X \oplus X'$, $X \subseteq U$, $U/X \ll_\delta M/X$. Thus $U = U \cap (X \oplus X') = X + (U \cap X')$ and $U \cap X' \cong U/X \ll_\delta M/X \cong X'$, hence $U \cap X' \ll_\delta M$.

(5) \(\Rightarrow\) (1). Let U be cofinite in M. By assumption, $M = X \oplus X'$, $X \subseteq U$, $U = X + Y$, $Y \ll_\delta M$. Thus X' is a δ-supplement of X in M. By lemma 2.3, and since $Y \ll_\delta M$, we have X' is a δ-supplement of $X + Y$ in M. Hence $X' \cap U = X' \cap (X + Y) \ll_\delta X'$.

(1) \(\Rightarrow\) (6). Let U be cofinite in M. By assumption, $M = X \oplus Y$, $X \subseteq U$ and $U \cap Y \ll_\delta Y$. For the decomposition, $M = X \oplus Y$, there exists an
idempotent \(e \in \text{End}(M) \), such that \(e(M) = X \) and \((1 - e)(M) = Y \). Since \(X \subseteq U \), we have \((1 - e)(U) = U \cap (1 - e)(M) = U \cap Y \ll_{\delta} (1 - e)(M) \).

(6) \(\Rightarrow\) (1). Let \(e(M) = X \) and \((1 - e)(M) = Y \).

Next we characterize projective cofinitely \(\delta\)-semiperfect modules

Theorem 3.6. Let \(P \) be a projective \(R \)-module. The following are equivalent

1. \(P \) is cofinitely \(\delta\)-semiperfect;
2. \(P \) is \(\oplus\)-cofinitely \(\delta\)-supplemented;
3. \(P \) is cofinitely \(\delta\)-lifting.

Proof. (1) \(\Rightarrow\) (2). Let \(U \) be a cofinite submodule of \(P \). By assumption, \(P/U \) has a projective \(\delta\)-cover. By [12, lemma 2.4], \(P = P_1 \oplus P_2 \), \(P_1 \subseteq U \) and \(P_2 \cap U \ll_{\delta} P \). Hence, \(P = U + P_2 \). By lemma 1.1, \(P_2 \cap U \ll_{\delta} P_2 \), i.e., \(P_2 \) is a \(\delta\)-supplement of \(U \) in \(P \). Therefore, \(P \) is \(\oplus\)-cofinitely \(\delta\)-supplemented module.

(2) \(\Rightarrow\) (3). Let \(U \) be a cofinite submodule of \(P \). By assumption, there exist \(K, K' \subseteq P \) such that, \(K + U = P \), \(K \cap U \ll_{\delta} K \) and \(K \oplus K' = P \). By [9, lemma 1.16], \(P = K \oplus U' \), where \(U' \subseteq U \). Hence \(P \) is cofinitely \(\delta\)-lifting.

(3) \(\Rightarrow\) (1). Let \(U \subseteq P \) be cofinite. By assumption, \(P = X \oplus Y \), \(X \subseteq U \), \(U \cap Y \ll_{\delta} Y \). Hence, the canonical map \(\pi : Y \to Y/(U \cap Y) = P/U \) is a projective \(\delta\)-cover of \(P/U \). Therefore, \(P \) is cofinitely \(\delta\)-semiperfect.

An \(R \)-module \(M \) is said to have the Summand Sum Property (SSP), if the sum of any two direct summands of \(M \) is a gain a direct summand of \(M \), (see [6]).

Proposition 3.7. Let \(f : Q \to M \) be a projective \(\delta\)-cover. If \(Q \) has the SSP, then the following are equivalent

1. \(M \) is cof-\(\delta\)-semiperfect;
2. \(Q \) is cof-\(\delta\)-semiperfect.

Proof. Let \(f : Q \to M \) be a projective \(\delta\)-cover, and \(Q \) has the SSP.

(1) \(\Rightarrow\) (2) Assume \(M \) is cof-\(\delta\)-semiperfect. Let \(U \) be a cofinite submodule of \(Q \). Then \(f(U) \) is cofinite in \(M \), hence \(M/f(U) \) has a projective \(\delta\)-cover \(\alpha : P \to M/f(U) \), where \(P \) is projective. If \(\pi : M \to M/f(U) \) denotes the canonical epimorphism, then \(\pi f : Q \to M/f(U) \) is an epimorphism. Thus, by [12, lemma 2.3], \(Q = X \oplus Y \), \(Y \subseteq \text{Ker}(\pi f) = U + \text{Ker}(f) \), and \((\pi f)|_X : X \to M/f(U) \) is a projective \(\delta\)-cover. From this it follows that \(X \cap (U + \text{Ker}(f)) \ll_{\delta} X \), and \(Q = X + U + \text{Ker}(f) \). Hence \(X \) is a \(\delta\)-supplement of \(U + \text{Ker}(f) \) in \(Q \). Since \(\text{Ker}(f) \ll_{\delta} Q \), then by lemma 2.3, there exists \(Z \) a direct summand of \(Q \), such
that \(X + Z \) is a \(\delta \)-supplement of \(U \) in \(Q \). Since \(Q \) has the SSP, then \(X + Z \) is a direct summand of \(Q \). Hence \(Q \) is \(\oplus \)-cofinitely \(\delta \)-supplemented. By theorem 3.6, \(Q \) is cofinitely \(\delta \)-semiperfect.

(2) \(\Rightarrow \) (1). This follows from theorem 3.3.

\textbf{Corollary 3.8.} An arbitrary direct sum of projective modules \(P_i, i \in I \) is cofinitely \(\delta \)-semiperfect if and only if each \(P_i \) is cofinitely \(\delta \)-semiperfect.

\textit{Proof.} The first direction is clear, since a direct summand of a cofinitely \(\delta \)-semiperfect module is cofinitely \(\delta \)-semiperfect, see theorem 3.3. Now, assume that each \(P_i \) is cofinitely \(\delta \)-semiperfect, hence, by theorem 3.6, each \(P_i \) is \(\oplus \)-cofinitely \(\delta \)-supplemented. Let \(P = \bigoplus P_i \) and \(U \) a cofinite submodule of \(P \). Since \(P/U \) is finitely generated, \(P = \bigoplus_{i \in I} P_i + P_{i_2} + \cdots + P_{i_n} \), for some \(n \in \mathbb{N} \) and \(i_1, i_2, \ldots, i_n \in I \). Thus \(P = \bigoplus_{k=1}^n P_{i_k} + U \). Now, it is clear that, 0 is a \(\delta \)-supplement of \(P_{i_1} + (\bigoplus_{k=2}^n P_{i_k} + U) \).

Since \(P_{i_1} \) is \(\oplus \)-cofinitely \(\delta \)-supplemented, \(P_{i_1} \cap (\bigoplus_{k=2}^n P_{i_k} + U) \) has a \(\delta \)-supplement \(S_{i_1} \) in \(P_{i_1} \) and \(S_{i_1} \) is a direct summand of \(P_{i_1} \), hence \(S_{i_1} \) is also a direct summand of \(P \). By lemma 2.4, \(S_{i_1} \) is a \(\delta \)-supplement of \(\bigoplus_{k=2}^n P_{i_k} + U \) in \(P \). Continuing this way \(n \)-times, we get \(\sum_{k=1}^n S_{i_k} = \bigoplus_{k=1}^n S_{i_k} \), which is a direct summand of \(P \), is a \(\delta \)-supplement of \(U \) in \(P \). Hence, \(P \) is \(\oplus \)-cofinitely \(\delta \)-supplemented. Since \(P \) is projective, then by theorem 3.6 again, \(P \) is cofinitely \(\delta \)-semiperfect as required.

\textbf{Now we give some characterizations of \(\delta \)-semiperfect rings in terms of the notions introduced in this work}

\textbf{Theorem 3.9.} Let \(R \) be a ring, then the following are equivalent

1. \(R \) is \(\delta \)-semiperfect;
2. Every finitely generated free module is \(\delta \)-semiperfect;
3. Every free module is cofinitely \(\delta \)-semiperfect;
4. Every free module is \(\oplus \)-cofinitely \(\delta \)-supplemented;
5. Every free module is cofinitely \(\delta \)-lifting;
6. Every module is cofinitely \(\delta \)-semiperfect;
7. \(R \) is \(\oplus \)-cofinitely \(\delta \)-supplemented.
Proof. (1) \Leftrightarrow (2). This follows from the fact that a finite direct sum of δ-supplemented modules is δ-supplemented.

(1) \Rightarrow (3). Every free R-module is a direct sum of copies of R. The result follows now from corollary 3.8.

(3) \Rightarrow (2). Since a finitely generated cofinitely δ-semiperfect module is δ-semiperfect.

(3) \Rightarrow (6). Every module is a factor of a free module. The result follows now from theorem 3.3.

(6) \Rightarrow (3) and (4) \Rightarrow (7) are trivial.

(3) \Leftrightarrow (4) and (4) \Leftrightarrow (5) follows from theorem 3.6.

(7) \Rightarrow (4). Follows from theorem 3.6 and corollary 3.8. \square

We close this section by some examples. We start with an example of Nicholson [9, Example 2.15]. This example was also considered by Zhou [12, Example 4.3].

Example 3.10. Let F be a field, $I = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, and

$$R = \{(x_1, \cdots, x_n, x, x, \cdots) : n \in \mathbb{N}, x_i \in M_2(F)\},$$

with component-wise operations. By [9, example 2.15], the Jacobson radical $\text{Rad}(R) = 0$ and R is not a regular ring, hence R is not semiperfect. By [12, example 4.3], we have $\delta(R) = \{(x_1, \cdots, x_n, x, x, \cdots) : n \in \mathbb{N}, x_i \in M_2(F), x \in J\}$, where $J = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$, and R is δ-semiperfect. From this it follows that R as a left R-module is

1. δ-supplemented but not supplemented,
2. cofinitely δ-supplemented, but not cofinitely supplemented,
3. cofinitely δ-semiperfect, but not cofinitely semiperfect, and
4. \oplus-cofinitely δ-supplemented, but not \oplus-cofinitely supplemented.

Example 3.11. Let R be a δ-semiperfect ring, which is not δ-perfect (see [12, Example 4.4]). Then every R-module is cofinitely δ-semiperfect. If every R-module is δ-semiperfect, then R would be δ-perfect (see [2]). So, there are R-modules, which are cofinitely δ-semiperfect but not δ-semiperfect. In fact, $R^{(N)}$ is such a module.

Also for this ring, every R-module is cofinitely δ-supplemented. If every (projective) R-module is δ-supplemented, then R would be δ-perfect (see [12]). So, there are (projective) R-modules, which are cofinitely δ-supplemented, but not δ-supplemented. $R^{(N)}$ satisfies this property.
Cofinitely δ-semiperfect modules

References

Received: July 16, 2007