A Short Note on the Primary Submodules of Multiplication Modules

Shahabaddin Ebrahimi Atani

University of Guilan Department of Mathematics P.O. Box 1914, Rasht, Iran ebrahimi@guilan.ac.ir

Fethi Çallıalp

Dogus University, Department of Mathematics Acıbadem, 34722, Istanbul, Turkey fcallialp@dogus.edu.tr

Ünsal Tekir

Marmara University, Department of Mathematics Ziverbey, Göztepe, İstanbul, Turkey utekir@marmara.edu.tr

Abstract. Let M be an R-module. An R-module M is called multiplication if for any submodule N of M we have N = IM, where I is an ideal of R. In this paper we characterize primary submodules of multiplication modules.

Mathematics Subject Classification: 13A15, 13A99

Keywords: Multiplication modules, Primary submodules

In this paper, all rings are commutative with identity and all modules are unitary. For a submodule N of an R-module M, the set $\{r \in R : rM \subseteq N\}$ is denoted by (N:M), this is the ideal Ann(M/N). A submodule N of an R-module M is said to be primary if $N \neq M$ and whenever $r \in R, m \in M$ and $rm \in N$, then $m \in N$ or $r^n \in (N:M)$ for some positive integer n. Let PSpec(M) denote all primary submodules of M. If N is primary submodule of an R-module M, it is easily shown that (N:M) is primary ideal of R.

An R-module M is called multiplication if for any submodule N of M we have N = IM, where I is an ideal of R. One can easily show that if M is a multiplication module, then N = (N:M)M for every submodule N of M [see, 1].

If P is a maximal ideal of R, $T_P(M) = \{m \in M : (1-p) \mid m = 0 \text{ for some } p \in P\}$. Clearly $T_P(M)$ is a submodule of M. We say that M is P-cyclic provided there exist $q \in P$ and $m \in M$ such that $(1-q) \mid M \subseteq Rm$.

In Example 1 we show that PSpec(M) may be empty.

Example 1. Let p be a fixed prime integer and $N_0 = Z^+ \cup \{0\}$. Then $M = E(p) = \{\alpha \in Q/Z : \alpha = r/p^n + Z \text{ for some } r \in Z \text{ and } n \in N_0\}$ is a nonzero submodule of the Z-module Q/Z. For each $t \in N_0$, set $G_t = \{\alpha \in Q/Z : \alpha = r/p^t + Z \text{ for some } r \in Z\}$. G_t is a cyclic submodule of E(p) generated by $1/p^t + Z$ for each $t \in N_0$. Each proper submodule of E(p) is equal to G_i for some $i \in N_0$. $(G_t :_Z E(p)) = 0$ for every $t \in N_0$. However no G_t is primary submodule of E(p), for if $p^k \notin (G_t :_Z E(p)) = 0$ for all k and $\beta = 1/p^{i+t} + Z \notin G_t (i > 0)$, but $p^i\beta = 1/p^t + Z \in G_t$. Consequently, $PSpec(M) = \varnothing$.

Theorem 1. Let R be a commutative ring with identity. Then, an R-module M is a multiplication module if and only if for every maximal ideal P of R either $M = T_P(M)$ or M is P-cyclic.

Proof. See [2, Theorem 1.2].

For an ideal I, the intersection of all prime ideals containing I is called radical of I and denoted by \sqrt{I} . It is well known that $\sqrt{I} = \{a \in R : a^n \in I \text{ for some } n\}$.

Let M be an R-module and N a submodule of M. A submodule N of M is called prime if $N \neq M$ and whenever $r \in R, m \in M$ and $rm \in N$, then $m \in N$ or $r \in (N : M)$ [see, for example, 3 and 5, 6]. In [2], Zeinab Abd El-Bast and Patrick F. Smith proved that if M is a faithful multiplication module and P a prime ideal of R such that $M \neq PM$ then PM is a prime submodule of M. Now, we prove that if M is a faithful multiplication module and P a primary ideal of R such that $M \neq PM$ then PM is a primary submodule of M.

Theorem 2. Let P be a primary ideal of R and M a faithful multiplication R-module. Let $a \in R, x \in M$ satisfy $ax \in PM$. Then $a \in \sqrt{P}$ or $x \in PM$.

Proof. Let $a \notin \sqrt{P}$. Let $K = \{r \in R : rx \in PM\}$. Suppose $K \neq R$. Then there exists a maximal ideal Q of R such that $K \subseteq Q$. Clearly $x \notin T_Q(M)$. For if $x \in T_Q(M)$, then (1-q)x = 0 for some $q \in Q$. Therefore, $0 = (1-q)x \in PM$ and so $1-q \in K \subseteq Q, 1 \in Q$, a contradiction.

By Theorem 1, M is Q-cyclic, that is there exists $m \in M, q \in Q$ such that $(1-q)M \subseteq Rm$. In particular, (1-q)x = sm and (1-q)ax = asm = pm for some $s \in R$ and $p \in P$. Thus (as-p)m = 0. Since $(1-q)M \subseteq Rm, (1-q)Ann(m)M \subseteq RAnn(m)m = 0$ and so (1-q)Ann(m)M = 0

0.Now [(1-q) Ann(m)] M = 0 implies (1-q) Ann(m) = 0, because M is faithful, and hence $(1-q) as = (1-q) p \in P$. Indeed, $as - p \in Ann(m)$ and so (1-q) (as - p) = 0, (1-q) as = (1-q) p.

But $P \subseteq K \subseteq Q$, so that $s \in P(\text{Since } (1-q)^n \notin P, a^m \notin P \text{ for all } m, n \in Z^+ \text{ and } P \text{ is primary}) \text{ and } (1-q)x = sm \in PM \Rightarrow 1-q \in K \subseteq Q, \text{ a contradiction. It follows that } K = R \text{ and } x \in PM, \text{ as required.} \blacksquare$

Corollary 1. Let M be a faithful multiplication R-module and P a primary ideal of R such that $M \neq PM$. Then PM is a primary submodule of M.

Proof. Let P be a primary ideal of R and M a faithful multiplication R-module. Then, $ax \in PM \Rightarrow x \in PM$ or $a \in \sqrt{P} \subseteq \sqrt{(PM:M)}$ where $a \in R$ and $x \in M$ by Theorem 2. Therefore, PM is a primary submodule of M.

Remark 1. Let M be an R-module and N a submodule of M such that $N \neq M$. Let I be an ideal of R such that $I \subseteq Ann(M) = (0:M)$. Then N is a primary R-submodule of M if and only if N is a primary submodule of M as an R/I-module.

Corollary 2. The following statements are equivalent for a proper submodule N of a multiplication R-module M.

- (i) N is primary submodule of M.
- (ii) (N:M) is primary ideal of R.
- $(iii)\ N=QM\ \text{for some primary ideal}\ Q\ \text{of}\ R\ \text{with}\ Ann\left(M\right)=(0:M)\subseteq Q.$

Proof. $(i) \Rightarrow (ii) \Rightarrow (iii)$. Clear.

 $(iii) \Rightarrow (i)$. Since $N = QM \neq M$ and as an R/(0:M)-module, N is primary, so is primary as an R-submodule of M by Remark 1.

Let R be a commutative ring with identity. R is called a Q-ring if and only if every ideal in R is a product of primary ideals[see , 4].

Definition 1. Let M be an R-module. M is called a Q-module if every submodule N of M such that $N \neq M$ either is primary or has a primary factorization $N = Q_1Q_2...Q_nN^*$, where $Q_1, Q_2, ..., Q_n$ are primary ideals of R and N^* is a primary submodule in M.

Theorem 3. Let R be a Q-ring and M a faithful multiplication R-module. Then, M is a Q-module.

Proof. Let N be a submodule of M such that $N \neq M$. Then N = IM for some ideal I of R. Since R is a Q-ring, $I = Q_1Q_2...Q_n$ and so $N = Q_1Q_2...Q_nM$ where $Q_1, Q_2, ..., Q_n$ are primary ideals of R. Since $N \neq M$, there exists a primary submodule $Q_iM \neq M, 1 \leq i \leq n$. Therefore, N either is a primary submodule of M or has a primary factorization by Corollary 1.

Corollary 3. If R is a Dedekind domain and M a faithful multiplication Rmodule, then M is a Q-module.

Theorem 4. Let M be a finitely generated faithful multiplication R-module. If M is a Q-module, then R is a Q-ring.

Proof. Let I be any ideal of R such that $I \neq R$. Then IM is a submodule of M such that $IM \neq M$ [see 2, Theorem 3.1] . Since M is a Q-module $IM = Q_1Q_2...Q_nN^*$ where $Q_1,Q_2,...,Q_n$ are primary ideals of R and N^* is a primary submodule of M. Since M is a multiplication module, $N^* = (N^* : M) M$, where $(N^* : M)$ is a primary ideal of R. Then $IM = Q_1Q_2...Q_n (N^* : M) M$. Then $I = Q_1Q_2...Q_n (N^* : M)$ [see 2, Theorem 3.1]. Consequently, R is a Q-ring.

Theorem 5. Let R be a Q-ring and M a finitely generated faithful multiplication R-module. Let S be a multiplicative closed subset of R. Then R_S -module M_S is a Q-module.

Proof. Let N_S be a submodule of M_S such that $N_S \neq M_S$. Since M is a multiplication R-module, M_S is a multiplication R_S -module[1, Lemma 2 (i)]. Then $N_S = I_S M_S$ for some ideal I_S of R_S . Since R is a Q-ring, it is clear that R_S is a Q-ring. Therefore, $I_S = (P_1)_S (P_2)_S \dots (P_n)_S$ where $(P_1)_S , (P_2)_S , \dots , (P_n)_S$ are primary ideals of R_S . It is clear that $Ann(M_S) = 0_S$. Therefore, N_S either is a primary submodule or has a primary factorization. Consequently, R_S -module M_S is a Q-module. ■

REFERENCES

- [1] Barnard, A. Multiplication modules. J. Algebra 71 (1981), no. 1, 174–178.
- [2] El-Bast, Zeinab Abd; Smith, Patrick F. Multiplication modules. Comm. Algebra 16 (1988), no. 4, 755–779.
- [3] Lu, Chin-Pi. Spectra of modules. Comm. Algebra 23 (1995), no. 10, 3741 3752.
- [4] Mahaney, Lou Ann, On Primary Factorization and Generating sets for ideals in Commutative Ring, The University of Texas at Arlington, 1984.
- [5] Moore, Marion E.; Smith, Sally J. Prime and radical submodules of modules over commutative rings. Comm. Algebra 30 (2002), no. 10, 5037–5064.
- [6] Tiras, Yücel; Harmanci, Abdullah; Smith, P.F., A characterization of prime submodules, J. Algebra 212, No.2, 743-752 (1999).

Received: April 9, 2007