A Short Note on the Primary Submodules of Multiplication Modules

Shahabaddin Ebrahimi Atani
University of Guilan
Department of Mathematics
P.O. Box 1914, Rasht, Iran
ebrahimi@guilan.ac.ir

Fethi Çallıalp
Dogus University, Department of Mathematics
Acıbadem, 34722, Istanbul, Turkey
fcallialp@dogus.edu.tr

Ünsal Tekir
Marmara University, Department of Mathematics
Ziverbey, Göztepe, İstanbul, Turkey
utekir@marmara.edu.tr

Abstract. Let M be an R-module. An R-module M is called multiplication if for any submodule N of M we have $N = IM$, where I is an ideal of R. In this paper we characterize primary submodules of multiplication modules.

Mathematics Subject Classification: 13A15, 13A99

Keywords: Multiplication modules, Primary submodules

In this paper, all rings are commutative with identity and all modules are unitary. For a submodule N of an R-module M, the set $\{r \in R : rM \subseteq N\}$ is denoted by $(N : M)$, this is the ideal $Ann (M/N)$. A submodule N of an R-module M is said to be primary if $N \neq M$ and whenever $r \in R, m \in M$ and $rm \in N$, then $m \in N$ or $r^n \in (N : M)$ for some positive integer n. Let $PSpec (M)$ denote all primary submodules of M. If N is primary submodule of an R-module M, it is easily shown that $(N : M)$ is primary ideal of R.
An R-module M is called multiplication if for any submodule N of M we have $N = IM$, where I is an ideal of R. One can easily show that if M is a multiplication module, then $N = (N : M)M$ for every submodule N of M [see, 1].

If P is a maximal ideal of R, $T_P(M) = \{m \in M : (1 - p)m = 0 \text{ for some } p \in P\}$. Clearly $T_P(M)$ is a submodule of M. We say that M is P-cyclic provided there exist $q \in P$ and $m \in M$ such that $(1 - q)M \subseteq Rm$.

In Example 1 we show that $PSpec(M)$ may be empty.

Example 1. Let p be a fixed prime integer and $N_0 = \mathbb{Z}^+ \cup \{0\}$. Then $M = E(p) = \{\alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = r/p^n + \mathbb{Z} \text{ for some } r \in \mathbb{Z} \text{ and } n \in N_0\}$ is a nonzero submodule of the \mathbb{Z}-module \mathbb{Q}/\mathbb{Z}. For each $t \in N_0$, set $G_t = \{\alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = r/p^t + \mathbb{Z} \text{ for some } r \in \mathbb{Z}\}$. G_t is a cyclic submodule of $E(p)$ generated by $1/p^t + \mathbb{Z}$ for each $t \in N_0$. Each proper submodule of $E(p)$ is equal to G_i for some $i \in N_0$. $(G_t : \mathbb{Z}E(p)) = 0$ for every $t \in N_0$. However no G_t is primary submodule of $E(p)$, for if $p^k \notin (G_t : \mathbb{Z}E(p)) = 0$ for all k and $\beta = 1/p^{i+t} + \mathbb{Z} \notin G_t(i > 0)$, but $p^{i+\beta} = 1/p^t + \mathbb{Z} \in G_t$. Consequently, $PSpec(M) = \emptyset$.

Theorem 1. Let R be a commutative ring with identity. Then, an R-module M is a multiplication module if and only if for every maximal ideal P of R either $M = T_P(M)$ or M is P-cyclic.

Proof. See [2, Theorem 1.2].

For an ideal I, the intersection of all prime ideals containing I is called radical of I and denoted by \sqrt{I}. It is well known that $\sqrt{I} = \{a \in R : a^n \in I \text{ for some } n\}$.

Let M be an R-module and N a submodule of M. A submodule N of M is called prime if $N \neq M$ and whenever $r \in R$, $m \in M$ and $rm \in N$, then $m \in N$ or $r \in (N : M)$ [see, for example, 3 and 5, 6]. In [2], Zeinab Abd El-Bast and Patrick F. Smith proved that if M is a faithful multiplication module and P a prime ideal of R such that $M \neq PM$ then PM is a prime submodule of M. Now, we prove that if M is a faithful multiplication module and P a primary ideal of R such that $M \neq PM$ then PM is a primary submodule of M.

Theorem 2. Let P be a primary ideal of R and M a faithful multiplication R-module. Let $a \in R, x \in M$ satisfy $ax \in PM$. Then $a \in \sqrt{P}$ or $x \in PM$.

Proof. Let $a \notin \sqrt{P}$. Let $K = \{r \in R : rx \in PM\}$. Suppose $K \neq R$. Then there exists a maximal ideal Q of R such that $K \subseteq Q$. Clearly $x \notin T_Q(M)$. For if $x \in T_Q(M)$, then $(1 - q)x = 0$ for some $q \in Q$. Therefore, $0 = (1 - q)x \in PM$ and so $1 - q \in K \subseteq Q, 1 \in Q$, a contradiction.

By Theorem 1, M is Q-cyclic, that is there exists $m \in M, q \in Q$ such that $(1 - q)M \subseteq Rm$. In particular, $(1 - q)x = sm$ and $(1 - q)ax = asm = pm$ for some $s \in R$ and $p \in P$. Thus $(as - p)m = 0$. Since $(1 - q)M \subseteq Rm, (1 - q)\text{Ann}(m)M \subseteq R\text{Ann}(m)m = 0$ and so $(1 - q)\text{Ann}(m)M =$
0. Now \((1 - q) \text{Ann}(m)\) \(M = 0\) implies \((1 - q) \text{Ann}(m) = 0\), because \(M\) is faithful, and hence \((1 - q) as = (1 - q)p \in P\). Indeed, \(as - p \in \text{Ann}(m)\) and so \((1 - q)(as - p) = 0\) \((1 - q)as = (1 - q)p\).

But \(P \subseteq K \subseteq Q\), so that \(s \in P\) (Since \((1 - q)^n \not\in P, a^m \not\in P\) for all \(m, n \in \mathbb{Z}^+\) and \(P\) is primary) and \((1 - q)x = sm \in PM \Rightarrow 1 - q \in K \subseteq Q\), a contradiction. It follows that \(K = R\) and \(x \in PM\), as required.

Corollary 1. Let \(M\) be a faithful multiplication \(R\)-module and \(P\) a primary ideal of \(R\) such that \(M \neq PM\). Then \(PM\) is a primary submodule of \(M\).

Proof. Let \(P\) be a primary ideal of \(R\) and \(M\) a faithful multiplication \(R\)-module. Then, \(ax \in PM \Rightarrow x \in PM\) or \(a \in \sqrt{P} \subseteq \sqrt{(PM : M)}\) where \(a \in R\) and \(x \in M\) by Theorem 2. Therefore, \(PM\) is a primary submodule of \(M\).

Remark 1. Let \(M\) be an \(R\)-module and \(N\) a submodule of \(M\) such that \(N \neq M\). Let \(I\) be an ideal of \(R\) such that \(I \subseteq \text{Ann}(M) = (0 : M)\). Then \(N\) is a primary \(R/I\)-submodule of \(M\) if and only if \(N\) is a primary submodule of \(M\) as an \(R/I\)-module.

Corollary 2. The following statements are equivalent for a proper submodule \(N\) of a multiplication \(R\)-module \(M\).

1. \(N\) is primary submodule of \(M\).
2. \((N : M)\) is primary ideal of \(R\).
3. \(N = QM\) for some primary ideal \(Q\) of \(R\) with \(\text{Ann}(M) = (0 : M) \subseteq Q\).

Proof. (i) \(\Rightarrow\) (ii) \(\Rightarrow\) (iii). Clear.

(iii) \(\Rightarrow\) (i). Since \(N = QM \neq M\) and as an \(R/(0 : M)\)-module, \(N\) is primary, so \(N\) is primary as an \(R\)-submodule of \(M\) by Remark 1.

Let \(R\) be a commutative ring with identity. \(R\) is called a \(Q\)-ring if and only if every ideal in \(R\) is a product of primary ideals[see , 4].

Definition 1. Let \(M\) be an \(R\)-module. \(M\) is called a \(Q\)-module if every submodule \(N\) of \(M\) such that \(N \neq M\) either is primary or has a primary factorization \(N = Q_1Q_2...Q_nN^*\), where \(Q_1, Q_2, ..., Q_n\) are primary ideals of \(R\) and \(N^*\) is a primary submodule in \(M\).

Theorem 3. Let \(R\) be a \(Q\)-ring and \(M\) a faithful multiplication \(R\)-module. Then, \(M\) is a \(Q\)-module.

Proof. Let \(N\) be a submodule of \(M\) such that \(N \neq M\). Then \(N = IM\) for some ideal \(I\) of \(R\). Since \(R\) is a \(Q\)-ring, \(I = Q_1Q_2...Q_n\) and so \(N = Q_1Q_2...Q_nM\) where \(Q_1, Q_2, ..., Q_n\) are primary ideals of \(R\). Since \(N \neq M\), there exists a primary submodule \(Q_iM \neq M, 1 \leq i \leq n\). Therefore, \(N\) either is a primary submodule of \(M\) or has a primary factorization by Corollary 1.

Corollary 3. If \(R\) is a Dedekind domain and \(M\) a faithful multiplication \(R\)-module, then \(M\) is a \(Q\)-module.
Theorem 4. Let M be a finitely generated faithful multiplication R-module. If M is a Q-module, then R is a Q-ring.

Proof. Let I be any ideal of R such that $I \neq R$. Then IM is a submodule of M such that $IM \neq M$ [see 2, Theorem 3.1]. Since M is a Q-module $IM = Q_1Q_2\ldots Q_nN^*$ where Q_1, Q_2, \ldots, Q_n are primary ideals of R and N^* is a primary submodule of M. Since M is a multiplication module, $N^* = (N^* : M) M$, where $(N^* : M)$ is a primary ideal of R. Then $IM = Q_1Q_2\ldots Q_n (N^* : M) M$. Then $I = Q_1Q_2\ldots Q_n (N^* : M)$ [see 2, Theorem 3.1]. Consequently, R is a Q-ring.

Theorem 5. Let R be a Q-ring and M a finitely generated faithful multiplication R-module. Let S be a multiplicative closed subset of R. Then R_S-module M_S is a Q-module.

Proof. Let N_S be a submodule of M_S such that $N_S \neq M_S$. Since M is a multiplication R-module, M_S is a multiplication R_S-module[1, Lemma 2 (i)]. Then $N_S = I_SM_S$ for some ideal I_S of R_S. Since R is a Q-ring, it is clear that R_S is a Q-ring. Therefore, $I_S = (P_1)_S(P_2)_S \ldots (P_n)_S$ where $(P_1)_S, (P_2)_S, \ldots, (P_n)_S$ are primary ideals of R_S. It is clear that $Ann(M_S) = 0_S$. Therefore, N_S either is a primary submodule or has a primary factorization. Consequently, R_S-module M_S is a Q-module.

REFERENCES

Received: April 9, 2007