Some Remarks on Aperiodic Elements in Locally Nilpotent Groups

Costantino Delizia

Dipartimento di Matematica e Informatica
Università di Salerno
Via Ponte don Melillo
84084 - Fisciano (SA), Italy
cdelizia@unisa.it

Abstract

In this paper we point out some situations in which one can recognize the local nilpotence of a non-periodic group looking at properties of its aperiodic part.

Mathematics Subject Classification: 20F18, 20F19, 20F45

Keywords: aperiodic elements, locally nilpotent groups, Engel groups

All through this paper, $T(G)$ will denote the set of all periodic elements of a group G. Let G be a non-periodic group, and suppose that $T(G)$ is a subgroup of G. Then $G = T(G) \cup X$, where X is the subgroup generated by all aperiodic elements of G. Therefore $G = X$ since G is non-periodic. This trivial fact is used here in several situations to recognize the local nilpotence of a non-periodic group looking at properties of its aperiodic part. Clearly, the following results make some sense only when the group has both periodic and aperiodic elements.

Proposition 1. Let G be a non-periodic group, and let c be any positive integer. Then G is nilpotent of class at most c if and only if every aperiodic element of G is contained in $Z_c(G)$.

Proof. Of course it suffices to prove that $T(G)$ is a subgroup of G, which implies $G = T(G) \cup Z_c(G)$ and $G = Z_c(G)$ since G is non-periodic. Suppose not. Hence there exist periodic elements a and b in G with ab aperiodic. Thus $ab \in Z_c(G)$. Then the subgroup $H = \langle a, ab \rangle = \langle a, b \rangle$ is nilpotent (of class at most c). Therefore H is finite and ab is periodic, a contradiction. \[\square\]
Corollary 1. Let G be a non-periodic group. Then G is nilpotent if and only if there exists a positive integer c such that every aperiodic element of G is contained in $Z_c(G)$.

Let \mathcal{X} be any class of groups. A group G is said to be weakly \mathcal{X} if every 2-generator subgroup of G belongs to the class \mathcal{X}.

Proposition 2. Let G be a non-periodic group which is weakly nilpotent or finite-by-nilpotent. Then G is nilpotent if and only if the subgroup generated by its aperiodic elements is nilpotent.

Proof. It is very easy to see that if G is weakly nilpotent or finite-by-nilpotent then the periodic elements of G form a subgroup. Thus the result follows.

Theorem 1. Let G be a non-periodic group. Then G is hypercentral if and only if every aperiodic element of G is contained in the hypercentre of G.

Proof. Let $\tilde{Z}(G)$ denote the hypercentre of G. Clearly, it suffices to prove that $T(G)$ is a subgroup of G. This implies $G = T(G) \cup \tilde{Z}(G)$ and $G = \tilde{Z}(G)$ since G is non-periodic. Suppose not. Then there exist periodic elements a and b in G with ab aperiodic. Thus $ab, ba = (ab)^n \in \tilde{Z}(G)$, so $[a, b] \in \tilde{Z}(G)$. Let consider the subgroup $H = \langle a, b \rangle$. Then $H' = \langle [a, b] \rangle^H \leq \tilde{Z}(G)$. It follows that H' is hypercentral, so it is locally nilpotent. Moreover H/H' is finite, since it is an abelian group generated by two periodic elements. This implies that H' is finitely generated and so it is polycyclic. Hence H is polycyclic. Then $\tilde{Z}(H)$ is finitely generated and nilpotent. Since $H/\tilde{Z}(H)$ is abelian, $H = \tilde{Z}(H)$. Thus H is nilpotent and therefore finite, and ab is periodic, a contradiction.

An element x of a group G is said to be a right Engel element if for each g in G there is a non-negative integer n such that $[x, n, g] = 1$.

Corollary 2. Let G be a non-periodic group which satisfies the maximal condition on abelian subgroups. If every aperiodic element of G is a right Engel element then G is nilpotent.

Proof. Let $R(G)$ denote the set of all right Engel elements of G. Since G satisfies the maximal condition on abelian subgroups, $R(G)$ coincides with the hypercentre of G by a result due to T.A. Peng (see, for instance, Theorem 7.21 in [7], Part 2). Then G is hypercentral by Theorem 1. Since a locally nilpotent group satisfying the maximal condition on abelian subgroups is nilpotent (see, for instance, Theorem 3.31 in [7], Part 1), the result follows.

Theorem 2. Let G be a non-periodic group. If every aperiodic element of G is contained in the ω-hypercentre of G then G is locally nilpotent.
Proof. Let $Z_\omega(G) = \bigcup_n Z_n(G)$ denote the ω-hypercentre of G. Arguing as in the proof of Proposition 1, one can prove that $T(G)$ is a subgroup of G, which implies $G = T(G) \cup Z_\omega(G)$ and $G = Z_\omega(G)$ since G is non-periodic.

It is well-known that there exist torsion-free locally nilpotent groups which are characteristically simple (see, for instance, the examples due to D.H. McLain in [7], Part 2, pages 14–16). Then the condition stated in the previous theorem is sufficient but not necessary for non-periodic groups to be locally nilpotent.

Theorem 3. Let G be a non-periodic group, and suppose that all aperiodic elements of G are contained in the Hirsch-Plotkin radical of G. Then either G is locally nilpotent, or G has an infinite polycyclic section K/L such that $Z(K/L) = 1$ and K is generated by two periodic elements of G.

Proof. Let $H(G)$ denote the Hirsch-Plotkin radical of G. If $T(G)$ is a subgroup of G, then G is locally nilpotent since it is non-periodic. Otherwise, there exist periodic elements a and b in G with ab aperiodic. Thus $ab, ba \in H(G)$, so $[a, b] \in H(G)$. Let consider the subgroup $K = \langle a, b \rangle$. Then $K' = ([a, b])^K \leq H(G)$. It follows that K' is locally nilpotent. Moreover K/K' is finite, since it is an abelian group generated by two periodic elements. This implies that K' is finitely generated and so it is polycyclic. Hence K is a non-nilpotent infinite polycyclic group. Then there exists a positive integer c such that $Z_c(K) = Z_{c+1}(K)$. Put $L = Z_c(K)$. If K/L is finite then $\gamma_{c+1}(K)$ is also finite by a result due to R. Baer (see, for instance, Theorem 14.5.1 in [8]), and K is nilpotent by Proposition 2. But this is a contradiction, so K/L is infinite and the result follows.

Notice that a non-periodic group G all whose aperiodic elements are contained in the Hirsch-Plotkin radical of G need not be locally nilpotent, even if G is supersoluble: consider, for example, the infinite dihedral group.

Let $R_2(G) = \{a \in G : [a, x, x] = 1, \text{ for all } x \in G\}$ denote the set of all **right 2-Engel elements** of a group G. It is known from [1] that $R_2(G)$ is a characteristic subgroup of G. A group G is said to be **2-Engel** if $G = R_2(G)$.

Theorem 4. Let G be a non-periodic group. Then G is 2-Engel if and only if every aperiodic element of G is contained in $R_2(G)$.

Proof. Of course it suffices to prove that $T(G)$ is a subgroup of G, which implies $G = T(G) \cup R_2(G)$ and $G = R_2(G)$ since G is non-periodic. Suppose not. Then there exist periodic elements a and b in G with ab aperiodic. Thus $ab, ba \in R_2(G)$. Let consider the subgroup $H = \langle a, b \rangle$. Then $[b, a, a] = [ab, a, a] = 1$ and $[a, b, b] = [ba, b, b] = 1$. It follows that H is nilpotent (of class at most 2). But this implies that H is finite, and ab is periodic, a contradiction.
Following W.P. Kappe, given any group G and any positive integer c, let $B_c(G) = \{x \in G : [x, g, a_1, \ldots, a_c, g] = 1, \text{ for all } g, a_1, \ldots, a_c \in G\}$. It has been proved in [2] that $B_c(G)$ is a characteristic subgroup of G, and that $x \in B_c(G)$ if and only if $[x a_0, g, a_1, \ldots, a_c, g] = [a_0, g, a_1, \ldots, a_c, g]$, for all $g, a_0, a_1, \ldots, a_c \in G$. Moreover $B_c(G)$ is nilpotent of class at most $c + 2$ (see [3] and [4]).

Theorem 5. Let G be a non-periodic group, and let c be any positive integer. If every aperiodic element of G is contained in $B_c(G)$ then G is nilpotent of class at most $c + 2$.

Proof. Suppose there exist periodic elements a and b in G with ab aperiodic. Thus $ab, ba \in B_c(G)$. Let consider the subgroup $H = \langle a, b \rangle$. Then $ab Z_{c+1}(H), ba Z_{c+1}(H) \in R_2(G/Z_{c+1}(H))$ by (3.1.3) of [2]. Hence, modulo $Z_{c+1}(H)$, we have $[b, a, a] = [ab, a, a] = 1$ and $[a, b, b] = [ba, b, b] = 1$. It follows that H is nilpotent (of class at most $c + 3$). But this implies that H is finite, and ab is periodic, a contradiction. Therefore $T(G)$ is a subgroup of G. This implies that $G = T(G) \cup B_c(G)$ and $G = B_c(G)$ since G is non-periodic. Hence the result follows.

Let $R_3(G) = \{a \in G : [a, x, x] = 1, \text{ for all } x \in G\}$ denote the set of all right 3-Engel elements of a group G. It is known that, in general, $R_3(G)$ need not be a subgroup of G (see [5]). In [6], M.L. Newell has shown that if $a \in R_3(G)$ then $\langle a, b \rangle$ is nilpotent of class at most 5, for all $b \in G$. Moreover, $R_3(G)$ is contained in the Hirsch-Plotkin radical of G.

Theorem 6. Let G be a non-periodic group. If every aperiodic element of G is contained in $R_3(G)$ then G is locally nilpotent. Moreover G is generated by its right 3-Engel elements.

Proof. Suppose that there exist periodic elements a and b in G with ab aperiodic. Let consider the subgroup $H = \langle a, b \rangle$. Since $ab \in R_3(G)$, from [6] it follows that H is nilpotent (of class at most 5). But this implies that H is finite, and ab is periodic, a contradiction. Therefore the periodic elements of G form a subgroup $T(G)$. Of course $G = T(G) \cup \langle R_3(G) \rangle$ and $G = \langle R_3(G) \rangle$ since G is non-periodic. Thus G is contained in its Hirsch-Plotkin radical by [6], and the result follows.

References

Received: January 11, 2007