Relative Finitistic Projective and Injective Dimensions

Yuzhen Wei

College of Science, Guilin University of Technology
Guilin, Guangxi 541004, P.R. China

Xi Tang

School of Science, Guilin University of Aerospace Technology
Guilin, Guangxi 541004, P.R. China

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

Let R be an associative ring with identity and RC a weakly Wakamatsu tilting module with $S \cong \text{End}_R(C)$. We study the finitistic projective dimension of R with respect to C. Under some conditions, it is shown that $\text{FP}_C D(R) = \text{FP}_D(S) = \sup \{G_{C-pd_R}(M) \mid M \in B_C(R) \text{ and } G_{C-pd_R}(M) < \infty\}$. Also we give the dual conclusion.

Keywords: Finitistic projective(injective) dimension; Weakly Wakamatsu tilting module; Weakly cotilting module

Mathematics Subject Classification: 18G15, 18E10, 18G35

1 Introduction

Semidualizing modules can be defined over different rings. Over a commutative Noetherian ring, they were introduced by Foxby [6], Golod [7] and Vasconcelos [12] (Foxby called them PG-modules of rank one, Golod called them suitable modules and Vasconcelos called them spherical modules). Araya et al.[1] furthered this definition to a non-commutative, but noetherian ring, while White

1 Corresponding author
extended the definition to the non-noetherian, but commutative, setting. The theory has developed quickly since Holm and White [9] initiated the study of semidualizing modules over arbitrary associative rings. Semidualizing modules have been a cornerstone of relative homological algebra. Several important results appeared in relevant literature. For instance, Holm [8, Theorem 2.28] proved that the classical finitistic projective dimension is equal to the related finitistic Gorenstein projective dimension. Over a commutative Noetherian ring R, Tavasoil [10] defined the finitistic projective dimension with respect to a semidualizing module C as follows:

$$FP_C^D(R) = \sup \{ P_C^\mu_R(M) \mid M \in \text{Mod}(R) \text{ and } P_C^\mu_R(M) < \infty \},$$

and it is shown in [10, Theorem 3.1] that

$$FP_C^D(R) = \sup \{ G_C^\nu_R(M) \mid M \in B_C(R) \text{ and } G_C^\nu_R(M) < \infty \}.$$

The aim of this paper is to extend this result to a non-commutative ring. Throughout this article, R will be an associative (not necessarily commutative) ring with identity. $\text{Mod}(R)$ denotes the category of left R-modules. We use $\text{Proj}(R)$ (resp., $\text{Inj}(R)$) to denote the class of all projective (resp., injective) left R-modules. For $C \in \text{Mod}(R)$, we use $\text{Add}_R(C)$ (resp., $\text{Prod}_R(C)$) to denote the class of all left R-modules which are isomorphic to direct summands of direct sums (resp., direct products) of copies of C. We also use $\text{add}_R(C)$ to denote the class of all left R-modules which are isomorphic to direct summands of finite direct sums of copies of C. This paper is organized as follows.

In Section 3, we define the finistic projective dimension of R with respect to a left R-module C as follows:

$$FP_C^D(R) = \sup \{ P_C^\mu_R(M) \mid M \in \text{Mod}(R) \text{ and } P_C^\mu_R(M) < \infty \}.$$

In Theorem 3.4, we prove that

$$FP_C^D(R) = \sup \{ G_C^\nu_R(M) \mid M \in X \text{ and } G_C^\nu_R(M) < \infty \},$$

where RC is a self-small weakly Wakamatsu tilting module, X is a subcategory of $\text{Mod}(R)$ such that $\text{Add}_R(C) \subseteq X$ and X is closed under extensions and cokernels of monomorphisms. Indeed, the theorem above is a generalized version of [10, Theorem 3.1].

In Section 4, we prove some dual results in Section 3. We define the finistic injective dimension of S with respect to a left R-module C as follows:

$$FI_C^D(S) = \sup \{ I_C^\mu_R(M) \mid M \in \text{Mod}(S) \text{ and } I_C^\mu_R(M) < \infty \}.$$

Suppose that CS has a degreewise finite projective resolution with $R \cong \text{End}_S(C)$, $\text{Ext}^1_R(C,C) = 0$ and that there is an injective cogenerator D which admits an exact left $\text{Prod}_S(C^\nu)$-resolution. Moreover, assume that E is an injective cogenerator in $\text{Mod}(R)$ and $U = C^\nu = \text{Hom}_R(C,E)$. It is shown that

$$FI_C^D(S) = \sup \{ G_U^\mu_S(M) \mid M \in Y \text{ and } G_U^\mu_S(M) < \infty \},$$

where Y denotes a subcategory of $\text{Mod}(S)$ such that $\text{Prod}_S(C^\nu) \subseteq Y$ and Y is closed under extensions and kernels of epimorphisms (see Theorem 4.3).
2 Preliminaries

Definition 2.1. ([9, Definition 2.1]) A semidualizing module is a \((R, S)\)-bimodule \(C\) satisfying the following properties:
\begin{enumerate}
\item \(RC\) and \(CS\) both admit a degreewise finite projective resolution in the corresponding module categories.
\item \(\text{Ext}^1_R(C, C) = \text{Ext}^1_S(C, C) = 0\).
\item The natural homothety maps \(R \to \text{Hom}_S(C, C)\) and \(S \to \text{Hom}_R(C, C)\) are ring isomorphisms.
\end{enumerate}

Definition 2.2. ([13, Section 3]) A Wakamatsu tilting module is a left \(R\)-module \(RC\) satisfying the following properties:
\begin{enumerate}
\item \(RC\) admits a degreewise finite projective resolution.
\item \(\text{Ext}^1_R(C, C) = 0\).
\item There exists a \(\text{Hom}_R(\cdot, C)\)-exact exact sequence of \(R\)-modules
\[X : 0 \to R \to C^0 \to C^1 \to \cdots, \]
where \(C^i \in \text{add}_R(C)\) for every \(i \in \mathbb{N}\).
\end{enumerate}

By [13, Corollary 3.2], \(RC_S\) is semidualizing if and only if \(RC\) is a Wakamatsu tilting module with \(S \cong \text{End}_R(C)\) if and only if \(CS\) is a Wakamatsu tilting module with \(R \cong \text{End}_S(C)\).

Definition 2.3. ([2, Definitions 2.1 and 4.2]) A left \(R\)-module \(C\) is weakly Wakamatsu tilting if it has the following two properties:
\begin{enumerate}
\item \(\text{Ext}^1_R(C, C^{(I)}) = 0\) for every set \(I\).
\item There exists an exact sequence of left \(R\)-modules
\[X : 0 \to R \to C_0 \to C_1 \to C_2 \to \cdots, \]
where \(C_i \in \text{Add}_R(C)\) for every \(i \in \mathbb{N}\) and such that \(\text{Hom}_R(\cdot, X)\) leaves the sequence \(X\) exact whenever \(X \in \text{Add}_R(C)\).
\end{enumerate}

Dually, a left \(R\)-module \(U\) is said to be weakly cotilting if it has the following two properties:
\begin{enumerate}
\item \(\text{Ext}^1_R(U^{(I)}, U) = 0\) for every set \(I\).
\item There is an injective congenerator \(D\) in \(R\)-modules which admits an exact sequence left \(R\)-modules:
\[Y : \ldots \to A_2 \to A_1 \to A_0 \to D \to 0, \]
where \(A_i \in \text{Prod}_R(U)\) for every \(i \in \mathbb{N}\) and such that \(\text{Hom}_R(Y, \cdot)\) leaves the sequence \(Y\) exact whenever \(Y \in \text{Prod}_R(U)\).
Definition 2.4. ([2, Definitions 2.2 and 4.1] Let $C, U, M \in \text{Mod}(R)$. M is said to be G_C-projective if there exist an exact sequence of left R-modules

$$X = \ldots \to P_1 \to P_0 \to A^0 \to A^1 \to \cdots$$

where $P_i \in \text{Proj}(R)$, $A^i \in \text{Add}_R(C)$ for every $i \in \mathbb{N}$, $M \cong \text{Im}(P_0 \to A^0)$, and such that $\text{Hom}_R(X, Q)$ is exact whenever $Q \in \text{Add}_R(C)$.

Dually, M is said to be G_U-injective if there exists an exact sequence of left R-modules

$$Y = \ldots \to Y_1 \to Y_0 \to I^0 \to I^1 \to \cdots$$

where the $I^i \in \text{Inj}(R)$, $Y_i \in \text{Prod}_R(U)$ for every $i \in \mathbb{N}$, $M \cong \text{Im}(Y_0 \to I^0)$ and such that $\text{Hom}_R(E, Y)$ is exact whenever $E \in \text{Prod}_R(U)$.

We use $G_C P(R)$ (resp., $G_U I(R)$) to denote the class of all G_C-projective (resp., G_U-injective) left R-modules.

Definition 2.5. ([5, Definition 4.1] Let $C \in \text{Mod}(R)$ and $S = \text{End}_R(C)$. A left R-module is said to be \mathcal{P}_C-projective if it is isomorphic to $C \otimes_S P$ for some $P \in \text{Proj}(S)$. A left S-module is said to be \mathcal{I}_C-injective if it is isomorphic to $\text{Hom}_R(C, I)$ for some $I \in \text{Inj}(R)$. We use $\mathcal{P}_C(R)$ (resp., $\mathcal{I}_C(S)$) to denote the categories of \mathcal{P}_C-projective (resp., \mathcal{I}_C-injective) left R (resp., S)-modules.

Definition 2.6. ([11]) Let \mathcal{X} be a subclass of $\text{Mod}(R)$. A left R-module M is said to have \mathcal{X}-projective dimension less than or equal to n, \mathcal{X}-$\text{pd}_R(M) \leq n$, if there exists an exact sequence

$$0 \to X_n \to \cdots \to X_1 \to X_0 \to M \to 0$$

with $X_i \in \mathcal{X}$ for every $i \in \{0, \ldots, n\}$. If n is the least nonnegative integer for which a sequence exists then \mathcal{X}-$\text{pd}_R(M) = n$, and if there is no such n then \mathcal{X}-$\text{pd}_R(M) = \infty$. Dually, we have the definition of \mathcal{X}-injective dimension.

In particular, When $\mathcal{X} = \mathcal{P}_C(R)$ (resp., $\mathcal{I}_C(R)$), we use \mathcal{P}_C-$\text{pd}_R(M)$ (resp., \mathcal{I}_C-$\text{id}_R(M)$) to denote the \mathcal{P}_C-projective (resp., \mathcal{I}_C-injective) dimension of M (see [5, Definition 4.1]). When $\mathcal{X} = G_C P(R)$ (resp., $G_U I(R)$), we use G_C-$\text{pd}_R(M)$ (resp., G_U-$\text{id}_R(M)$) to denote the G_C-projective (resp., G_U-injective) dimension of M (see [2, Definitions 3.1 and 4.10]).

Next we recall the definitions of Auslander and Bass classes.

Definition 2.7. ([4]) Let $C \in \text{Mod}(R)$ and $S = \text{End}_R(C)$, the Auslander class associated to C, $\mathcal{A}_C(S)$, is the class of all left S-module M satisfying

(A1) $\text{Tor}^S_{\geq 1}(C, M) = 0$.

(A2) $\text{Ext}^1_R(C, C \otimes_S M) = 0$.

(A3) the canonical map $\mu_M : M \to \text{Hom}_R(C, C \otimes_S M)$ is an isomorphism of
left S-modules.
On the other hand, the Bass class associated to C, $\mathcal{B}_C(R)$, consists of all left R-modules N satisfying
(B1) $\operatorname{Ext}^{\geq 1}_R(C, N) = 0$.
(B2) $\operatorname{Tor}^{\geq 1}_S(C, \operatorname{Hom}_R(C, N)) = 0$.
(B3) the canonical map $\nu_N : C \otimes_S \operatorname{Hom}_R(C, N) \to N$ is an isomorphism of left R-modules.

3 Relative finitistic projective dimension

In [8, Theorem 2.28], it is proved that there is an equality between the classical finitistic projective dimension:
$$\operatorname{FPD}(R) = \sup \{ \operatorname{pd}_R(M) \mid M \in \operatorname{Mod}(R) \text{ and } \operatorname{pd}_R(M) < \infty \}$$
and the related finitistic projective dimension:
$$\operatorname{FPD}(R) = \sup \{ \operatorname{Gpd}_R(M) \mid M \in \operatorname{Mod}(R) \text{ and } \operatorname{Gpd}_R(M) < \infty \},$$
where $\operatorname{Gpd}_R(M)$ denotes the Gorenstein projective dimension of M.

For $C \in \operatorname{Mod}(R)$, we define the finitistic projective dimension with respect to C as follows:
$$\operatorname{FP}_C\operatorname{D}(R) = \sup \{ \operatorname{Pd}_C(M) \mid M \in \operatorname{Mod}(R) \text{ and } \operatorname{Pd}_C(M) < \infty \}.$$

In particular, when $C = R$, it is exactly the classical finitistic projective dimension FPD(R).

Definition 3.1. ([2, Definition 5.1]) A left R-module C is said to be self-small, if for every set I,
$$\operatorname{Hom}_R(C, C^{(I)}) \cong \operatorname{Hom}_R(C, C)^{(I)}.$$

A left R-module M is said to be Hom-faithful, if $\operatorname{Hom}_R(M, N) = 0$, then $N = 0$.

Proposition 3.2. ([5, proposition 3.1]) If RC is self-small and $S \cong \operatorname{End}_R(C)$, then $\operatorname{Add}_R(C) = C \otimes_S \operatorname{Proj}(S)$.

Proposition 3.3. Let C be a weakly Wakamatsu tilting module. If $0 \to K \to G \to M \to 0$ is an exact sequence with $G \in G_C\operatorname{P}(R)$.
(1) If $M \in G_C\operatorname{P}(R)$, then $K \in G_C\operatorname{P}(R)$.
(2) If $G_C\operatorname{pd}_R(M) > 0$, then $G_C\operatorname{pd}_R(K) = G_C\operatorname{pd}_R(M) - 1$.

Proof. (1) If $M \in G_C\operatorname{P}(R)$, by [2, proposition 2.9], $G_C\operatorname{P}(R)$ is closed under kernels of epimorphisms. So we have $K \in G_C\operatorname{P}(R)$.
(2) Assume $G_C\operatorname{pd}_R(M) = m > 0$, by [2, Proposition 3.11], $G_C\operatorname{pd}_R(K) = \sup \{ G_C\operatorname{pd}_R(G), G_C\operatorname{pd}_R(M) - 1 \} = m - 1$ (note that $0 = G_C\operatorname{pd}_R(G) \neq G_C\operatorname{pd}_R(M) = m$). □
Theorem 3.4. Suppose \(rC \) is a self-small weakly Wakamatsu tilting module. If \(\text{Add}_R(C) \subseteq \mathcal{X} \), and \(\mathcal{X} \) is closed under extensions and cokernels of monomorphisms, then

\[
\text{FP}_C D(R) = \sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \}.
\]

Proof. By assumptions, we know that \(\mathcal{X} \) contains modules with finite \(\mathcal{P}_C \)-projective dimensions. [3, Theorem 3.6] implies that

\[
\text{FP}_C D(R) \leq \sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \}.
\]

If \(M \in \mathcal{X} \) with \(0 < \text{Gpd}_R(M) = m < \infty \), then [2, Theorem 3.5] implies that there is a short exact sequence \(0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0 \) with \(\mathcal{P}_C - \text{pd}_R(K) < \infty \), \(\mathcal{P}_C - \text{pd}_R(K) = \text{Gpd}_R(K) = m - 1 \), then \(\mathcal{P}_C - \text{pd}_R(K) = \text{Gpd}_R(M) - 1 \). Therefore,

\[
\sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \} \leq \text{FP}_C D(R) + 1.
\]

Next we will prove that \(\sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \} \leq \text{FP}_C D(R) \).

Let \(0 < \sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \} = m < \infty \) and let \(M \in \mathcal{X} \) with \(\text{Gpd}_R(M) = m \), we have a short exact sequence \(0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0 \) with \(\mathcal{P}_C - \text{pd}_R(K) = \text{Gpd}_R(K) = m - 1 \).

Since \(G \) is \(\text{Gpd}_R \)-projective, there exists a projective right \(S \)-module \(P \) such that \(G \subseteq C \otimes_S P \). Also we can consider the left \(R \)-module \(L = C \otimes_S P/K \), since \(K \subseteq G \), we get \(M \cong G/K \) with \(M \subseteq L \), therefore we can get an exact sequence \(0 \rightarrow M \rightarrow L \rightarrow L/M \rightarrow 0 \), besides we can also get an exact sequence \(0 \rightarrow G \rightarrow C \otimes_S P \rightarrow L/M \rightarrow 0 \) (note that \(L/M \cong C \otimes_S P/G \)). Because \(\mathcal{P}_C - \text{pd}_R(K) < \infty \), \(K \subseteq \mathcal{X} \). Thus \(G \subseteq \mathcal{X} \). Since \(C \otimes_S P \subseteq \mathcal{X} \), \(\mathcal{X} \) is closed under cokernels of monomorphisms, we get \(L/M \in \mathcal{X} \). We claim that \(L \notin \text{Gpd}_R(P) \).

If \(L \in \text{Gpd}_R(P) \), according to Proposition 3.3, \(\text{Gpd}_R(L/M) = m + 1 > m \), which contradicts \(\sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \} = m \), hence \(L \notin \text{Gpd}_R(P) \). So we have an exact sequence \(0 \rightarrow K \rightarrow C \otimes_S P \rightarrow L \rightarrow 0 \) with \(\text{Gpd}_R(L) = \text{Gpd}_R(K) + 1 = m \), \(\mathcal{P}_C - \text{pd}_R(K) < \infty \) and \(C \otimes_S P \) is \(\text{Add}_R(C) \), so \(\mathcal{P}_C - \text{pd}_R(L) < \infty \). Therefore \(\mathcal{P}_C - \text{pd}_R(L) = \text{Gpd}_R(L) = m \).

Corollary 3.5. If \(C \) is a self-small weakly Wakamatsu tilting module, \(S \cong \text{End}_R(C) \), \(rC \) is Hom-faithful, \(\text{Add}_R(C) \subseteq \mathcal{X} \), \(\mathcal{X} \) is closed under extensions and cokernels of monomorphisms, then

\[
\text{FP}_C D(R) = \text{FPD}(S) = \sup \{ \text{Gpd}_S(M) \mid M \in \text{Mod}(S) \text{ and } \text{Gpd}_S(M) < \infty \} = \sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{X} \text{ and } \text{Gpd}_R(M) < \infty \}.
\]

Proof. The first equality follows from [3, Proposition 4.2] and the second one follows from [8, Theorem 2.28]. Finally, the third one is immediate by Theorem 3.4.

Corollary 3.6. If \(C \) is a self-small weakly Wakamatsu tilting module and \(rC \) is Hom-faithful, then

\[
\text{FP}_C D(R) = \sup \{ \text{Gpd}_R(M) \mid M \in \mathcal{B}_C(R) \text{ and } \text{Gpd}_R(M) < \infty \}.
\]
Proof. Let $X = B_C(R)$. According to [2, Proposition 5.6], $\text{Add}_R(C) \subseteq B_C(R)$ and $B_C(R)$ is closed under extensions and cokernels of monomorphisms. So the result follows from Corollary 3.5.

4 Relative finitistic injective dimension

In [8, Theorem 2.29], it is shown that there is an equality between the classical finitistic injective dimension:

$$\text{FID}(R) = \sup \{ \text{id}_R(M) \mid M \in \text{Mod}(R) \text{ and } \text{id}_R(M) < \infty \}$$

and the related finistic Gorenstein injective dimension:

$$\text{FID}(R) = \sup \{ \text{Gid}_R(M) \mid M \in \text{Mod}(R) \text{ and } \text{Gid}_R(M) < \infty \},$$

where $\text{Gid}_R(M)$ denotes the Gorenstein injective dimension of M.

For $C \in \text{Mod}(R)$, we define finistic injective dimension with respect to C as follows:

$$\text{FI}_C D(S) = \sup \{ \mathcal{I}_C-\text{id}_S(M) \mid M \in \text{Mod}(S) \text{ and } \mathcal{I}_C-\text{id}_S(M) < \infty \}.$$

In particular, when $C = R$, it is exactly the classical finitistic injective dimension $\text{FID}(R)$.

Proposition 4.1. [5, Proposition 3.2] Assume that C_S is self-orthogonal, it admits a degreewise finite projective resolution and $R = \text{End}_S(C)$. Then $\text{Prod}_S(C^\vee) = \text{Hom}_R(C, I(R)) = \mathcal{I}_C(S)$ (I is injective in $\text{Mod}(R)$).

Proposition 4.2. Let U be a weakly cotilting module. Suppose that $0 \rightarrow M \rightarrow G \rightarrow K \rightarrow 0$ is a short exact sequence with G G_U-injective. Then the following statements hold.

(1) If $M \in G_U I(S)$, then $K \in G_U I(S)$.

(2) If $G_U-\text{id}_S(M) > 0$, then $G_U-\text{id}_S(K) = G_U-\text{id}_S(M) - 1$.

Proof. It is dual to the proof of Proposition 3.3.

Theorem 4.3. Suppose that C_S has a degreewise finite projective resolution with $R \cong \text{End}_S(C)$, $\text{Ext}_{S_{op}}^1(C, C) = 0$ and that there is an injective cogenerator D which admits an exact left $\text{Prod}_S(C^\vee)$-resolution. Let $U = C^\vee$. If $\text{Prod}_S(U) \subseteq \mathcal{Y}$, \mathcal{Y} is closed under extensions and kernels of epimorphisms. Then

$$\text{FI}_C D(S) = \sup \{ G_U-\text{id}_S(M) \mid M \in \mathcal{Y} \text{ and } G_U-\text{id}_S(M) < \infty \}.$$

Proof. Note that C^\vee is weakly cotilting by [4, Lemma 3.6]. By assumption, we get that \mathcal{Y} contains modules with finite \mathcal{I}_C-injective dimensions. Using [3, Theorem 3.6] and Proposition 4.1, we can get that $G_U-\text{id}_S(M) = \mathcal{I}_C-\text{id}_S(M)$ when $\mathcal{I}_C-\text{id}_S(M) < \infty$. So we conclude $\text{FI}_C D(S) \leq \sup \{ G_U-\text{id}_S(M) \mid M \in \mathcal{Y} \text{ and } G_U-\text{id}_S(M) < \infty \}$. If $M \in \mathcal{Y}$ with $0 < G_U-\text{id}_S(M) = m < \infty$, by [4,
Lemma 3.6], \(U \) is weakly cotilting. Then the dual of [2, Theorem 3.5] implies that there is a short exact sequence \(0 \to M \to G \to K \to 0 \) with \(\mathcal{I}_C\text{id}_S(K) = \text{G}_{U}\text{id}_S(M) - 1 \). Therefore,

\[
\sup \{ \text{G}_{U}\text{id}_S(M) \mid M \in \mathcal{Y} \text{ and } \text{G}_{U}\text{id}_S(M) < \infty \} \leq \text{FI}_C D(S) + 1.
\]

Next we will show that \(\sup \{ \text{G}_{U}\text{id}_S(M) \mid M \in \mathcal{Y} \text{ and } \text{G}_{U}\text{id}_S(M) < \infty \} \leq \text{FI}_C D(S) \). Let \(0 < \sup \{ \text{G}_{U}\text{id}_S(M) \mid M \in \mathcal{Y} \text{ and } \text{G}_{U}\text{id}_S(M) < \infty \} = m < \infty \) and let \(M \in \mathcal{Y} \) with \(\text{G}_{U}\text{id}_S(M) = m \), from above, we have a short exact sequence \(0 \to M \to G \to K \to 0 \) with \(\mathcal{I}_C\text{id}_S(K) = m - 1 \). Since \(G \) is \(U \)-injective, there exists an injective left \(R \)-module \(E \) such that \(\text{Hom}_R(C, E) \to G \) is epic, so \(\text{Hom}_R(C, E) \to G \) is also epic. We can consider \(H \cong \text{Ker}(\text{Hom}_R(C, E)) \to K \), we get an exact sequence \(0 \to F \to H \to M \to 0 \) with \(F = \text{Ker}(H \to M) \), besides we also have an exact sequence: \(0 \to F \to \text{Hom}_R(C, E) \to G \to 0 \). Similarly, we can get \(F \in \mathcal{Y} \). We claim \(H \notin \text{G}\text{id}_S(C,E) \), the proof is dual to that of Theorem 3.4. Finally we consider a short exact sequence \(0 \to H \to \text{Hom}_R(C, E) \to K \to 0 \), and \(\text{G}_{U}\text{id}_S(H) = \text{G}_{U}\text{id}_S(K) + 1 = m \), and \(\mathcal{I}_C\text{id}(H) < \infty \), and \(H \in \mathcal{Y} \), we get \(\mathcal{I}_C\text{id}_S(H) = \text{G}_{U}\text{id}_S(H) = m \).

Corollary 4.4. Suppose \(C_S \) has a degreewise finite projective resolution with \(R \cong \text{End}_S(C) \), \(rC \) is Hom-faithful, \(\text{Ext}_{S^{op}}^{2}(C,C) = 0 \) and that there is an injective cogenerator \(D \) which admits an exact left \(\text{Prod}_S(C^\vee)\)-resolution. Let \(U = C^\vee \). Then

\[
\text{FI}_C D(S) = \sup \{ \text{G}_{U}\text{id}_S(M) \mid M \in \mathcal{A}_C(S) \text{ and } \text{G}_{U}\text{id}_S(M) < \infty \}.
\]

Proof. Let \(\mathcal{Y} = \mathcal{A}_C(S) \). According to [4, Lemma 3.2 (2)] and [2, Proposition 5.4], \(\text{Prod}_S(C^\vee) \subseteq \mathcal{A}_C(S) \) and \(\mathcal{A}_C(S) \) is closed under extensions and kernels of epimorphisms. So the result follows from Theorem 4.3. \(\square \)

Corollary 4.5. If \(\text{Inj} R \subseteq \mathcal{Y} \), \(\mathcal{Y} \) is closed under extensions and kernels of epimorphisms. Then

\[
\text{FI}_R D(S) = \text{FID}(R)
\]

\[
= \sup \{ \text{Gid}_R(M) \mid M \in \text{Mod}(R) \text{ and } \text{Gid}_R(M) < \infty \}
\]

\[
= \sup \{ \text{G}_{R^\vee}\text{id}_R(M) \mid M \in \mathcal{Y} \text{ and } \text{G}_{R^\vee}\text{id}_R(M) < \infty \}
\]

Proof. The second equality follows from [8, Theorem 2.29] and the third one is immediate by Theorem 4.3. \(\square \)

Acknowledgements. This research was partially supported by NSFC (Grant No. 12061026), and NSF of Guangxi Province of China (Grant No. 2020GXNSFAA159120).
References

https://doi.org/10.1216/jca-2010-2-1-111

Received: April 29, 2023; Published: May 25, 2025