Real Division Algebras with Central Idempotent Satisfying \((x^2, y^2, x^2) = 0\)

Bouchra Aharmim

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II, 7955 Casablanca, Morocco

Kandé Diaby

Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université Cheikh Anta Diop, 5005 Dakar, Senegal

Oussama Fayz

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II, 7955 Casablanca, Morocco

Abdellatif Rochdi

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II, 7955 Casablanca, Morocco

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2021 Hikari Ltd.

Abstract

We show that every real division algebra, with a non-zero central idempotent, satisfying \((x^2, y^2, x^2) = 0\) is flexible and isomorphic to either a commutative division algebra of dimension \(\leq 2\), a scalar isotope of a mutation of the quaternion algebra \(\mathbb{H}\) or a kind of isotope of the octonion algebra \(\mathbb{O}\).
Mathematics Subject Classification: 17A35

Keywords: Real division algebra, (third-power associative, power-commutative, quadratic, flexible) algebra, central idempotent. Scalar-isotopy, degree of a continuous map

1. Introduction

One of the fundamental results about real division algebras is the \((1, 2, 4, 8)\)-theorem. It is proved partially by Hopf [H 40] then finished by Kervaire [K 58] and, independently, Milnor-Bott [BM 58]. It states that if the real space \(\mathbb{R}^n\) possess a bilinear product without divisors of zero, then \(n = 1, 2, 4\) or 8 [HKR 91].

It is well known that \(\mathbb{R}\) (real numbers), \(\mathbb{C}\) (complex numbers), \(\mathbb{H}\) (quaternions) classify all associative real division algebras [Fr 1878], [HKR 91]. Also \(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\) (octonions) classify all alternatives real division algebras [Z 31], [HKR 91]. These last two results have been established by purely algebraic arguments.

A result established by means of differential geometry reinforced the theory. Let \(\mathcal{A}\) be a real division algebra of dimension \(\geq 2\) with a norm \(\|\cdot\|\) and let \(S\) be its unit-sphere. It is proved that if \(\mathcal{A}\) contains an unit-element then the mapping \(S \to S, \ x \mapsto x^2 \|x^2\|\) has degree 2 [Y 81, Lemma 1] and therefore surjective [Ha 02, 2.2 (b) p. 134].

A classification of all quadratic flexible real division algebras has been given by means of the \((1, 2, 4, 8)\)-theorem and vector isotopy from algebras \(\mathbb{H}, \mathbb{O}\) [CDKR 99]. Such an algebras are isomorphic to either \(\mathbb{R}, \mathbb{C}\), a mutation \(\mathbb{H}(\lambda)\) \((\lambda \in \mathbb{R} \setminus \{\frac{1}{2}\})\) of the quaternion algebra or a vector isotope \(\mathbb{O}(\varphi)\) of the octonion algebra.

Motivated by these results, we set out to study those real division algebras without unit satisfying the identity \((x^2, y^2, x^2) = 0\).

We introduce, in section 2, the basic tools especially a reminder on quadratic algebras.

Section 3 is devoted for the definition and properties of a notion of isotopy over quadratic algebras.

Our paper ends in section 4 with our main result.

2. Notations and definitions

Let \(\mathcal{A}\) be a non-associative algebra over the field \(\mathbb{R}\) of real numbers. We denote by \(L_x, (x, y, z), [x, y], \mathcal{A}(x)\), respectively, the operator of left-multiplication
by $x \in \mathcal{A}$, the associator of $x, y, z \in \mathcal{A}$, the commutator of $x, y \in \mathcal{A}$ and the subalgebra generated by $x \in \mathcal{A}$.

An element $x \in \mathcal{A}$ is said to be central if $[x, \mathcal{A}] = 0$. The algebra \mathcal{A} is said to be flexible (resp. third-power associative, power-commutative) if it satisfies $(x, \mathcal{A}, x) = 0$ (resp. $(x, x, x) = 0$, $\mathcal{A}(x)$ is commutative) for all $x \in \mathcal{A}$. It is said to be a division algebra if it is finite-dimensional and L_x is bijective for all non-zero $x \in \mathcal{A}$.

Let λ be a real number. The algebra $\mathcal{A}(\lambda)$ obtained from the space \mathcal{A} by putting $x^\lambda y = \lambda xy + (1 - \lambda)yx$ is called the mutation λ of \mathcal{A}.

The algebra \mathcal{A} is said to be quadratic if it contains an unit-element e and e, x, x^2 are linearly dependent for all $x \in \mathcal{A}$.

It is well known [Os 62] that every quadratic real algebra \mathcal{A}, with unit e, is obtained from an anti-commutative one, (V, \wedge) and a bilinear form (\ldots, \ldots) over V by providing space $\mathbb{R}e \oplus V$ with the product:

$$(\alpha e + x)(\beta e + y) = (\alpha \beta + (x, y))e + (\alpha y + \beta x + x \wedge y).$$

Space V is none other than $\{x \in \mathcal{A} : x^2 \in \mathbb{R}e, x \notin (\mathbb{R}e \setminus \{0\})\}$ [Os 62], [BBO 82] noted $Im(\mathcal{A})$ [HKR 91]. The bilinear form is extended to all of \mathcal{A} by defining $(e, e) = 1$ and $(e, x) = 0$ for $x \in Im(\mathcal{A})$ [BBO 82]. $(Im(\mathcal{A}), \wedge)$ is called the associated anti-commutative algebra of \mathcal{A}. The algebra \mathcal{A} is denoted by $(Im(\mathcal{A}), \wedge, (\ldots, \ldots))$ [Os 62]. If, in addition, \mathcal{A} has no zero divisors then $Im(\mathcal{A}) = \{x \in \mathcal{A} : x^2 = -\omega e, \omega > 0\}$ [HKR 91, p. 224].

3. Scalar vector isotopy

Let \mathcal{A} be a real quadratic algebra with unit e and let λ be fixed in $\mathbb{R} \setminus \{0\}$ then the linear mapping

$$\Psi : \mathcal{A} = \mathbb{R}e \oplus Im(\mathcal{A}) \to \mathcal{A} \quad ae + u \mapsto ae + \lambda u$$

is bijective. The algebra $\lambda \mathcal{A}$ with underlying space \mathcal{A} and product given by

$$x \circ y = \Psi(x)\Psi(y)$$

is called the scalar isotope of \mathcal{A} determined by λ. It is showed that if \mathcal{A} is flexible then $\lambda \mathcal{A}$ is flexible [BBO 82].

Let $\lambda, \lambda' \in \mathbb{R} \setminus \{0\}$. It is clear that $\lambda \mathcal{A} = \mathcal{A}$ and $\lambda'(\lambda' \mathcal{A}) = \lambda' \mathcal{A}$. The following proposition solves the isomorphism problem for scalars isotopes of quadratic real algebras:

Proposition 1. Let \mathcal{A} (resp. \mathcal{B}) be a real quadratic division algebra with unit element e (resp. e') and let $\lambda, \lambda' \in \mathbb{R} \setminus \{0\}$. We assume that the only central element of \mathcal{A} (resp. \mathcal{B}) is a scalar multiple of its unit element. Then the following two statements are equivalent:

1. $\lambda \mathcal{A}, \lambda' \mathcal{B}$ are isomorphic,
2. $\lambda' = \lambda$ and \mathcal{A}, \mathcal{B} are isomorphic.
Proof. (1) ⇒ (2). Let \(\Psi_\lambda \) (resp \(\Lambda_{\lambda'} \)) be the automorphism of the space \(\mathcal{A} \) (resp. space \(\mathcal{B} \)) defined by \(\Psi_\lambda(\alpha e + u) = \alpha e + \lambda u \) (resp. \(\Lambda_{\lambda'}(\alpha e' + v) = \alpha e' + \lambda' v \)) and let \(\ast \) (resp. \(\ast' \)) be the product in algebra \(\lambda \mathcal{A} \) (resp. \(\lambda' \mathcal{B} \)). The juxtaposition refers to the products of algebras \(\mathcal{A} \) and \(\mathcal{B} \).

Clearly, \(e \) is a non-zero central element of algebra \(\lambda \mathcal{A} \).

Now, if \(\Phi : \lambda \mathcal{A} \to \lambda' \mathcal{B} \) is an isomorphism of algebras then \(\Phi(e) \) is a non-zero central element of algebra \(\lambda' \mathcal{B} \). By hypothesis, there is a non-zero \(\gamma \in \mathbb{R} \) such that \(\Phi(e) = \gamma e' \). We deduce easily, from equality

\[
\Phi(e \ast e) = \Phi(e) \ast' \Phi(e)
\]

that \(\gamma = 1 \) and then \(\Phi(e) = e' \).

Now, let \(u \) be non-zero in \(\text{Im}(\mathcal{A}) \) then \(u^2 = -\omega e \) with \(\omega > 0 \) and we have:

\[
\left(\Lambda_{\lambda'}\Phi(u) \right)^2 = \Phi(u) \ast' \Phi(u) \\
= \Phi(u \ast u) \\
= \Phi(\lambda^2 u^2) \\
= -\lambda^2 \omega e'.
\]

Consequently \(\Lambda_{\lambda'}\Phi(\text{Im}(\mathcal{A})) \subseteq \text{Im}(\mathcal{B}) \) and we also have:

\[
\Phi(\text{Im}(\mathcal{A})) \subseteq \Lambda_{\lambda'}^{-1}\text{Im}(\mathcal{B}) = \text{Im}(\mathcal{B}).
\]

Thus \(\Phi \) commutes with \(\Psi_\lambda \). Now, for every \(u \in \text{Im}(\mathcal{A}) \) we have:

\[
\Phi(\lambda u) = \Phi(\Psi_\lambda(u)) \\
= \Lambda_{\lambda'}(\Phi(u)) \text{ because } \Phi(e) = e' \\
= \lambda'\Phi(u) \text{ because } \Phi(u) \in \text{Im}(\mathcal{B}).
\]

So \(\lambda' = \lambda \). Now, for every \(x \in \mathcal{A} \), we have:

\[
\Phi(\Psi_\lambda(x)) = \Phi(x \ast e) \\
= \Phi(x) \ast \Phi(e) \\
= \Lambda_{\lambda}(\Phi(x)) \text{ because } \Phi(e) = e'.
\]

So \(\Phi \circ \Psi_\lambda = \Lambda_{\lambda} \circ \Phi \). Now, for every \(x, y \in \mathcal{A} \), we have:

\[
\Phi(\Psi_\lambda(x)\Psi_\lambda(y)) = \Phi(x \ast y) \\
= \Phi(x) \ast \Phi(y) \\
= \Lambda_{\lambda}(\Phi(x))\Lambda_{\lambda}(\Phi(y)) \\
= \Phi(\Psi_\lambda(x))\Phi(\Psi_\lambda(y)).
\]

This shows that \(\Phi(x'y') = \Phi(x')\Phi(y') \) for all \(x', y' \in \mathcal{A} \) because \(\Psi_\lambda \) is bijective.
Real division algebras with central idempotent satisfying \((x^2, y^2, x^2) = 0\)

(2) ⇒ (1). If \(\lambda' = \lambda\) and \(\Phi : A \to B\) is an isomorphism of algebras then we show in the same way that \(\Phi : \lambda A \to \lambda B\) be an isomorphism of algebras. □

Now, let \((Im(A), \wedge), (\cdot, \cdot)\) be the associated anti-commutative algebra of \(A\) and a negative definite symmetric bilinear form over \(Im(A)\), respectively. We consider an automorphism \(\varphi\) of the euclidean space \((Im(A), -(\cdot, \cdot))\) and we put

\[x\Delta y = \varphi^*(\varphi(x) \wedge \varphi(y)), \quad x, y \in Im(A) \]

where \(\varphi^*\) is the adjoint automorphism of \(\varphi\) and denote by \((Im(A), (\cdot, \cdot), \wedge), (Im(A), (\cdot, \cdot), \Delta)\), respectively, the real quadratic algebras constructed from the anti-commutative algebras \((Im(A), \wedge)\) \((Im(A), \Delta)\) and the symmetric bilinear form \((\cdot, \cdot)\). The algebra \((Im(A), (\cdot, \cdot), \Delta)\) is said to be obtained from \(A = (Im(A), (\cdot, \cdot), \wedge)\) and \(\varphi\) by vector isotopy \([CDKR 99, Remark 3.4. 1]\). It is denoted by \(A(\varphi)\). We will denote by \(\tilde{\varphi}\) the endomorphism which prolongs \(\varphi\) in all \(A\) defined by \(\tilde{\varphi}(ae + u) = ae + \varphi(u)\).

Definition 1. Let \(\lambda, (Im(A), \wedge), (\cdot, \cdot), \varphi\) be, respectively, a non-zero real number, the associated anti-commutative algebra of \(A\), a negative definite symmetric bilinear form over \(Im(A)\) and an automorphism of the euclidean space \((Im(A), (\cdot, \cdot))\). By composing vector isotopy and scalar isotopy we obtain, from \(A = (Im(A), (\cdot, \cdot), \wedge)\) and \((\lambda, \varphi)\) a new algebra \(\lambda A(\varphi)\) called scalar vector isotope of \(A\) determined by \((\lambda, \varphi)\).

4. Main result

Let now \(A\) be a real division algebra of dimension \(n\) whose underlying real space can be taken to be equal to \(\mathbb{R}^n\). We will denote by \(||\cdot||\) any norm over the space \(\mathbb{R}^n\) and by \(S^{n-1}\) its unit-sphere.

We have the following key result:

Lemma 1. Assume that \(A\) contains a non-zero central idempotent \(e\). Then the well defined continuous mapping \(\Phi : S^{n-1} \to S^{n-1}\) \(x \mapsto \|x\|^2 \cdot x^2\) is surjective.

Proof. We define on the vector space \(A\) a product \(x \circ y = L_e^{-1}(x)L_e^{-1}(y)\) and obtain a new real division algebra \((A, \circ)\) with unit element \(e\). So the continuous mapping \(\Psi : S^{n-1} \to S^{n-1}\) \(x \mapsto \|x \circ x\|^2 \cdot x \circ x\) is of degree 2 \([Y 81, Lemma 1]\). It follows that \(\Psi\) is surjective \([Ha 02, 2.2 (b) p. 134]\) and so is \(\Phi = \Psi \circ L_e\). □

Corollary 1. Every real division algebra \(A\) having a non-zero central idempotent and satisfying \((x^2, y^2, x^2) = 0\) is flexible.

Proof. Let \(x, y \in A\). According to Lemma 1 there exists \(a_x, a_y \in A\) such that \(a_x^2 = x\) and \(a_y^2 = y\). Thus \((x, y, x) = (a_x^2, a_y^2, a_x^2) = 0\). So \(A\) is flexible. □

It is convenient to state the following main result taken from \([BBO 82]\):
Theorem 1. If \(\mathcal{A} \) is a finite-dimensional real algebra, then \(\mathcal{A} \) is a flexible division algebra if and only if \(\mathcal{A} \) has one of the following forms:

1. \(\mathcal{A} \) is a commutative division algebra of dimension 1 or 2,
2. \(\mathcal{A} \) is isomorphic to a scalar isotope \(\lambda \mathcal{B} \) of some quadratic real division algebra \(\mathcal{B} \) which is flexible (and hence noncommutative Jordan), or
3. \(\mathcal{A} \) is a generalized pseudo-octonion algebra.

We will use the notation \(\mathcal{O} = (\text{Im}(\mathcal{O}), \wedge, (\cdot,\cdot)) \) expressing the quadratic algebra \(\mathcal{O} \) with its anti-commutative associated algebra and its defined negative symmetric bilinear form. We denote by \(E \) the euclidian space \((\text{Im}(\mathcal{O}), -(\cdot,\cdot)) \).

We now state our main result:

Theorem 2. Every real division algebra \(\mathcal{A} \) having a non-zero central idempotent and satisfying \((x^2, y^2, x^2) = 0\) is flexible. It is isomorphic to either a commutative division algebra of dimension \(\leq 2 \) or a scalar isotope \(\lambda \mathcal{B} \) (\(\lambda \in \mathbb{R} \setminus \{0\} \)) of some quadratic flexible real division algebra \(\mathcal{B} \). Concretely

1. If \(\dim \mathcal{A} = 4 \) then \(\mathcal{A} \) is isomorphic to \(\lambda \mathcal{H}(\alpha) \) for some real numbers \(\lambda, \alpha \) with \(\lambda \neq 0 \) and \(\alpha \neq \frac{1}{2} \). Moreover, \(\lambda \mathcal{H}(\alpha), \lambda \mathcal{H}(\alpha') \) are isomorphic \((\lambda, \alpha' \in \mathbb{R} \setminus \{0\}, \alpha, \alpha' \in \mathbb{R} \setminus \{\frac{1}{2}\})\) if and only if \(\lambda' = \lambda \) and either \(\alpha' = \alpha \) or \(\alpha' = 1 - \alpha \).
2. If \(\dim \mathcal{A} = 8 \) then \(\mathcal{A} \) is isomorphic to \(\lambda \mathcal{O}(s) \) with \(\lambda \in \mathbb{R} \setminus \{0\} \) and \(s \) a positive definite symmetric endomorphism of euclidian space \(E \). Moreover, \(\lambda \mathcal{O}(s), \lambda \mathcal{O}(s') \) are isomorphic \((\lambda, \alpha' \in \mathbb{R} \setminus \{0\}, s, s' \) being positive definite symmetric endomorphisms of euclidian space \(E \)\) if and only if \(\lambda' = \lambda \) and there is an automorphism \(\Phi \) of algebra \(\mathcal{O} \) such that \(s' = \Phi^{-1} \circ s \circ \Phi \).

Proof. \(\mathcal{A} \) is flexible by Corollary 1. The well-known generalized pseudo-octonion algebras do not contain any non-zero central idempotent \([BBO 82, \text{Theorem 6.42}]\), thus the second statement follows from Theorem 1. It remains to concretize the structure of \(\mathcal{A} \) in dimensions 4 and 8:

1. If \(\dim \mathcal{A} = 4 \) then \(\mathcal{B} \) is isomorphic to a mutation \(\mathcal{H}(\alpha) \) \((\alpha \in \mathbb{R} \setminus \{\frac{1}{2}\})\) of quaternion algebra \(\mathcal{H} \) \([CDKR 99, \text{Remark 3.4 2}]\). Proposition 1 shows that \(\lambda \mathcal{B} \) is isomorphic to \(\lambda \mathcal{H}(\alpha) \). Thus this case in dimension 4 is concluded by Proposition 1 and \([CDKR 99, \text{Remark 3.4 2}]\).
2. If \(\dim \mathcal{A} = 8 \) then, according to \([CDKR 99, \text{Theorem 5.7}]\), \(\mathcal{B} \) is isomorphic to a vector isotope \(\mathcal{O}(s) \) with \(s \) a positive definite symmetric endomorphism of euclidian space \(E \). Proposition 1 shows that \(\lambda \mathcal{B} \) is isomorphic to \(\lambda \mathcal{O}(s) \). The proof is completed under Proposition 1 and \([CDKR 99, \text{Theorem 5.7}]\).

\[\square \]

Remark 1. Every 8-dimensional real quadratic flexible division algebra \(\mathcal{A} \) contains 4-dimensional subalgebras \([CDKR 99, \text{Theorem 4.7}]\) and so is \(\lambda \mathcal{A} \) for any non-zero real number \(\lambda \). It is then relevant to know whether an 8-dimensional
real quadratic division algebra contains 4-dimensional subalgebras. This issue has already been raised in [CDKR 99, Remark 4.8].

REFERENCES

Received: December 21, 2020; Published: February 10, 2021