Some Characterizations of Ternary Semigroups

by Bi-Ideals

Anila Peposhi
Polytechnic University of Tirana
Faculty of Mathematical Engineering and Physical Engineering
Department of Mathematical Engineering

Thanas Xhillari
University of Tirana
Faculty of Natural Sciences
Department of Mathematics

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2020 Hikari Ltd.

Abstract

In this paper we have presented some properties of bi-ideals in ternary semigroups. We have presented some definitions and prepositions on bi-ideals and minimal bi-ideals in a ternary semigroup.

Keywords: Bi-Ideal, 0 –Minimal Bi-Ideal, Ternary Semigroup

1 Introduction and Elementary Concepts

D. H. Lehmer [8] gave the definition of a ternary semigroup as follows:

Definition 1.1. A ternary semigroup is a non-empty set S together with a ternary operation which has the property of association:

$$(abc)de = a(bcd)e = ab(cde)$$

for all a, b, c and d in S.

Definition 1.2. A non-empty set T of a ternary semigroup S is called a subsemigroup of S if $a \in T$, $b \in T$ and $c \in T$ imply $abc \in T$.

Definition 1.3. An element e of a ternary semigroup S is called:
(i) left identity of S if $eea = a$ for all a in S
(ii) right identity of S if $aee = a$ for all a in S
(iii) lateral identity of S if $eae = a$ for all a in S
(iv) two sided identity of S if e is left and right identity of S
(v) identity of S if e is left, right and lateral identity of S.

Definition 1.4. An element z of a ternary semigroup S is called a zero element of S if $zab = zza = zaz = azb = abz = azz = z$ for all a, b in S.

Let S be any ternary semigroup and 1 a fixed element in S. We extend the ternary operation of S to $S \cup 1$ defining $111 = 1$ and $11a = 1a1 = a11 = a$ for all a in S. In this way we have attached to S the identity element 1. Similarly we attach to S the zero element 0 defining $000 = 0ab = a0b = ab0 = 0$ for all a, b, c in S. So we have:

$$S^1 = \begin{cases} S & \text{if } S \text{ has an identity} \\ S \cup 1 & \text{otherwise} \end{cases}$$
$$S^0 = \begin{cases} S & \text{if } S \text{ has a zero element} \\ S \cup 0 & \text{otherwise} \end{cases}$$

F. M. Sioson [7] gave the following definitions of ideals as follows:

Definition 1.5. A non-empty subset A of a ternary semigroup S is called:
(i) left ideal of S if $SSA \subseteq A$
(ii) right ideal of S if $ASA \subseteq A$
(iii) lateral ideal of S if $SAS \subseteq A$
(iv) two sided ideal of S if A is a left and right ideal of S
(v) ideal of S if A is a left, right and lateral ideal of S.

Proposition 1.6. Let S be a ternary semigroup, L a left ideal of S, R a right ideal of S and M a lateral ideal of S. Then, LMR is a two sided ideal of S. Moreover $RML \subseteq R \cap M \cap L$.

Proof. Let $a \in L, b \in M, c \in R$ and $s_1, s_2 \in S$. Then, $s_1s_2(abc) = (s_1s_2a)bc \in LMR$ since $s_1s_2a \in L$ due to the fact that L is a left ideal of S. Thus LMR is a left ideal of S. We have also that $(abc)s_1s_2 = ab(cs_1s_2) \in LMR$ since $cs_1s_2 \in R$ due to the fact that R is a right ideal of S. Thus LMR is a right ideal of S. Now let we show that $RML \subseteq R \cap M \cap L$. Let $a \in R, b \in M$ and $c \in L$. Then, $abc \in R$ since R is a right ideal of S. We have also that $abc \in M$ since M is a lateral ideal of S. On the other side $abc \in L$ since L is a left ideal of S. This implies that $abc \in R \cap M \cap L$.

Definition 1.7. A non-empty subset Q of a ternary semigroup S is called a quasi-ideal of S if $QSS \cap SQS \cap SSS \subseteq Q$ and $QSS \cap SQS \cap SSQ \subseteq Q$.

The notion of regularity was introduced and studied by J. von Neumann \cite{10} in 1936.

Definition 1.8. A ternary semigroup S is called regular if for all $a \in S$ exist $x, y \in S$ such that $a = axya$.

2 Bi-Ideals in Ternary Semigroups

Good and Hughes \cite{11} introduced the notion of bi-ideal.

Definition 2.1. A ternary subsemigroup B of a ternary semigroup S is called bi-ideal of S if $BSBSB \subseteq B$.

Preposition 2.2. Every bi-ideal B of a ternary semigroup S with zero 0 contains 0.

Proof. For all $a \in B$, $a0a0a = 0a = 0000a = 0 \in B$ since $BSBSB \subseteq B$.

Preposition 2.3. Every left, right and lateral ideal of a ternary semigroup S is a bi-ideal of S.

Proof. Let L a left ideal of S. Then $LSL \subseteq (SSS)SL \subseteq SSL \subseteq L$. Similarly, if R is a right ideal of S we have $RSR \subseteq RS(SSS) \subseteq RSS \subseteq R$. We also have that if M is a lateral ideal of S then $MSM \subseteq SSMSS \subseteq SMS \subseteq M$.

Preposition 2.4. Let Q be a quasi-ideal of a ternary semigroup S. Then Q is a bi-ideal of S.

Proof. $QSSQ \subseteq SQS \cap SQS \cap QSS \subseteq Q$. This implies that Q is a bi-ideal of S.

Note 2.5. The converse does not hold, in general, that is, a bi-ideal of a ternary semigroup S may not be a quasi-ideal of S.

Remark 2.6. Since every left, right, and lateral ideal of S is a quasi-ideal of S, it follows that every left, right, and lateral ideal of S is a bi-ideal of S, but the converse is not true, in general.

Preposition 2.7. The intersection of two quasi-ideals Q_1 and Q_2 of a ternary semigroup S is a bi-ideal of S.

Note 2.5. The converse does not hold, in general, that is, a bi-ideal of a ternary semigroup S may not be a quasi-ideal of S.
Proof. By Preposition we have $Q_1SQ_1SQ_1 \subseteq Q_1$ and $Q_2SQ_2SQ_2 \subseteq Q_2$. Thus $(Q_1 \cap Q_2)S(Q_1 \cap Q_2)S(Q_1 \cap Q_2) \subseteq Q_1SQ_1SQ_1 \subseteq Q_1$ and $(Q_1 \cap Q_2)S(Q_1 \cap Q_2)S(Q_1 \cap Q_2) \subseteq Q_2SQ_2SQ_2 \subseteq Q_2$. Therefore $(Q_1 \cap Q_2)S(Q_1 \cap Q_2)S(Q_1 \cap Q_2) \subseteq Q_1 \cap Q_2$. This implies that $Q_1 \cap Q_2$ is a bi-ideal of S.

Proposition 2.8. The intersection of any set of bi-ideals of a ternary semigroup S is either empty or a bi-ideal of S.

Proof. Let $(B_i)_{i \in I}$ be any non-empty set of bi-ideals of S. Then $(\cap_{i \in I} B_i)S(\cap_{i \in I} B_i)S(\cap_{i \in I} B_i) \subseteq B_iSB_iSB_i \subseteq B_i$, for all $i \in I$. Thus $(\cap_{i \in I} B_i)S(\cap_{i \in I} B_i)S(\cap_{i \in I} B_i) \subseteq \cap_{i \in I} B_i$ which implies that $\cap_{i \in I} B_i$ is a bi-ideal of S.

Preposition 2.9. The intersection of any set of bi-ideals of a ternary semigroup S with zero 0 is a bi-ideal of S.

Proof. Let $(B_i)_{i \in I}$ be any set of bi-ideals of S. Since $0 \in B_i$ for all $i \in I$ we have $0 \in \cap_{i \in I} B_i$. Thus $\cap_{i \in I} B_i \neq \emptyset$. Furthermore, the proof can be continued in the same way as in Preposition 2.8.

Preposition 2.10. If B is a bi-ideal of a ternary semigroup S and T is a ternary subsemigroup of S, then $B \cap T$ is a bi-ideal of T.

Proof. $(B \cap T)T(B \cap T)T(B \cap T) \subseteq BTBTB \subseteq BSBSB \subseteq B$ and $(B \cap T)T(B \cap T)T(B \cap T)T(B \cap T) \subseteq TT TT \subseteq TTTT \subseteq TTT \subseteq T$. These assertions imply that $(B \cap T)T(B \cap T)T(B \cap T)T \subseteq B \cap T$. Thus $B \cap T$ is a bi-ideal of T.

Lemma 2.11. If B is a bi-ideal of a ternary semigroup S and T_1, T_2 are two ternary subsemigroups of S, then $B T_1 T_2, T_1 B T_2$ and $T_1 T_2 B$ are bi-ideals of S.

Proof. $(B T_1 T_2)S(B T_1 T_2)S(B T_1 T_2) = B(T_1 T_2 B)(T_1 T_2 B)T_1 T_2 \subseteq BSBSB T_1 T_2 \subseteq BT_1 T_2$. This implies that $B T_1 T_2$ is a bi-ideal of S. We also have that $(T_1 T_2)S(T_1 T_2)S(T_1 T_2) = T_1 B(T_2 B T_1 B)(T_2 B T_1 B)T_1 B \subseteq T_1 BSBSB T_1 B \subseteq T_1 BT_2$. This implies that $T_1 BT_2$ is a bi-ideal of S. Finally, we have $(T_1 T_2 B)S(T_1 T_2 B)S(T_1 T_2 B) = T_1 T_2 B(T_2 B T_1 B)(T_2 B T_1 B)B \subseteq T_1 T_2 BSBSB \subseteq T_1 T_2 B$. This implies that $T_1 T_2 B$ is a bi-ideal of S.

Corollary 2.12. If B_1, B_2 and B_3 are three bi-ideals of a ternary semigroup S, then $B_1 B_2 B_3$ is a bi-ideal of S.

Proof. $(B_1 B_2 B_3)S(B_1 B_2 B_3)S(B_1 B_2 B_3) = B_1 B_2 B_3(SB_1 B_2 B_3)(SB_1 B_2 B_3)B_3 \subseteq B_1 B_2 B_3 SB_3 B_3 \subseteq B_1 B_2 B_3$. This implies that $B_1 B_2 B_3$ is a bi-ideal of S.
Corollary 2.13. If \(Q_1, Q_2 \) and \(Q_3 \) are three quasi-ideals of a ternary semigroup \(S \), then \(Q_1 Q_2 Q_3 \) is a bi-ideal of \(S \).

Proof. It follows by Preposition 2.4. and Corollary 2.12.

In general, if \(B \) is a bi-ideal of a ternary semigroup \(S \), and \(T \) is a bi-ideal of \(B \), then \(T \) is not a bi-ideal of \(S \), but in particular, we have the following result.

Theorem 2.14. Let \(B \) be a bi-ideal of a ternary semigroup \(S \), and \(T \) a bi-ideal of \(B \) such that \(T^3 = T \). Then \(T \) is a bi-ideal of \(S \).

Proof. Since \(B \) is a bi-ideal of \(S \) we have \(B \subseteq BBSB \subseteq B \), and since \(T \) is a bi-ideal of \(B \) we have \(B \subseteq TBSTBT \subseteq T \). Therefore, \(TSTST = (TTT)STS(TTT) = TT(TSTST)TT \subseteq TT(BBSB)TT \subseteq TTBTT = TTB(TTT) \subseteq T(TBSTBT)B \subseteq TTT = T \).

Preposition 2.15. Let \(A, B, \) and \(C \) be three ternary subsemigroups of a ternary semigroup \(S \) and \(T = ABC \). Then, \(T \) is a bi-ideal if at least one of \(A, B, C \) is a right, a lateral, or a left ideal of \(S \).

Proof. Let \(T = ABC \) and \(A \) a right ideal of \(S \). Then \((ABC)S(ABC)S(ABC) = A(SSS)(SSS)SSBC \subseteq A(SSS)SSBC \subseteq (ASS)BC \subseteq ABC \). Therefore, \(T = ABC \) is a bi-ideal of \(S \). Now, let \(B \) a right ideal of \(S \). Then \((ABC)S(ABC)S(ABC) \subseteq AB(SSS)(SSS)SSC \subseteq AB(SSS)SC \subseteq ABSSC \subseteq ABC \). This implies that \(T = ABC \) is a bi-ideal of \(S \). Finally, let \(C \) be a right ideal of \(S \). We have \((ABC)S(ABC)S(ABC) \subseteq ABC(SSS)(SSS)SS \subseteq ABC(SSS)SS \subseteq ABCSS \subseteq ABC \). Whence, \(T = ABC \) is a bi-ideal of \(S \). Similarly we prove the other two cases.

Let \(X \) be a non-empty set of a ternary semigroup \(S \). The bi-ideal of \(S \) generated by \(X \) we mean the intersection \((X)_b \) of all bi-ideals of \(S \) containing \(X \) which actually is a bi-ideal of \(S \) in view of Preposition 2.9. If \(X \) is a finite subset of \(S \), then \((X)_b \) \([(X)_b, (X)_r, (X)_l, \) or \((X) \) \] is called a finely generated bi-ideal [quasi-ideal, left ideal, lateral ideal, right ideal or ideal] of \(S \).

Preposition 2.16. Let \(T \) be an ideal [left ideal, lateral ideal, right ideal, quasi-ideal or bi-ideal] of a ternary semigroup \(S \). If \(Y \) is a ternary subsemigroup of \(S \) such that \(SST \cup STS \cup TSS \subseteq Y \subseteq T \), \(SST \subseteq Y \subseteq T \), \(TST \subseteq Y \subseteq T \), \(TSS \subseteq Y \subseteq T \), \(SST \cap (STS \cup SSTSS) \cap TSS \subseteq Y \subseteq T \) or \(TSTST \subseteq Y \subseteq T \) then \(Y \) is an ideal [left ideal, lateral ideal, right ideal, quasi-ideal or bi-ideal] of \(S \).

Proof. \(SSY \subseteq SST \subseteq STS \cup TSS \subseteq Y \), \(SYS \subseteq STS \subseteq STS \cup TSS \subseteq Y \), \(YSS \subseteq TSS \subseteq STS \cup TSS \subseteq Y \), \(SSY \subseteq ST \subseteq Y \), \(SYS \subseteq STS \subseteq Y \), \(YSS \subseteq TSS \subseteq Y \).
$Y, SSS \cap (SYS \cup SSYS) \cap YSS \subseteq SST \cap (STS \cup SSTSS) \cap TSS \subseteq Y$ or $YSYS \subseteq TSTST \subseteq Y$.

Theorem 2.17. If S is a regular ternary semigroup then $BSBSB = B$ for every bi-ideal B of S.

Proof. Let S be a regular ternary semigroup and B a bi-ideal of S. Then, it is evident that $BSBSB \subseteq B$. Let $a \in B$. Since S is regular we have that exist $x, y \in S$ such that $a = axaya$. This implies that $a \in BSBSB$. It follows that $B \subseteq BSBSB$.

Theorem 2.18. Let S be a regular ternary semigroup, and B a bi-ideal of S. Then, $BSB \subseteq B$.

Proof. Let $a \in BSB$. Since S is regular we have that exist $x, y \in S$ such that $a = axaya$. We also have that $a = b_1sb_2$ with $b_1, b_2 \in B$ and $s \in S$. Thus, $a = (b_1sb_2)x(b_1sb_2)y(b_1sb_2) = (b_1sb_2xb_1)(sb_2y)b_1sb_2 \subseteq B(SSS)BSB \subseteq BSBSB \subseteq B$. This implies that $BSB \subseteq B$.

Theorem 2.19. Let S be a regular ternary semigroup, and B a bi-ideal of S. Then, B is a quasi-ideal of S.

Proof. $BSS \cap (SBS \cup SSBSS) \cap SSB = BSS(SBS \cup SSBSS)SSB = B(SSS)B(SSS)B \cup B(SSS)SB(SSS)SB \subseteq BSBSB \cup BSSBSSB \subseteq B \cup BSB \subseteq B \cup B = B$.

In view of Lemma 2.11. and Theorem 2.19., we have the following result.

Theorem 2.20. If Q_1, Q_2 are two ternary subsemigroups and Q_3 is a bi-ideal of a ternary semigroup S, then $Q_1Q_2Q_3, Q_1Q_3Q_2$ and $Q_3Q_1Q_2$ are quasi-ideals of S.

Theorem 2.21. If a ternary semigroup S is regular, then the condition $B_g(a) = aSaSa$ holds for every element a of S ($B_g(a)$ denotes the smallest bi-ideal of S containing a).

Proof. $B_g(a)SB_g(a)SB_g(a) = (aSaSa)S(aSaSa)S(aSaSa) = a(SaS)SaS(aSaS)a \subseteq aSSaSSS \subseteq aSaSa = B_g(a)$. Consequently, $B_g(a)$ is a bi-ideal of S. Since S is regular, there exist $x, y \in S, a = axaya \in aSaSa = B_g(a)$. Let T be a bi-ideal of S such that $a \in T$. Then, $B_g(a) = aSaSa \subseteq TSTST \subseteq T$.

Proposition 2.22. Let R, M and L be respectively right, lateral and left ideals of a ternary semigroup S. Then, any ternary subsemigroup B of S such that $RML \subseteq B \subseteq R \cap M \cap L$ is a bi-ideal of S.
Some characterizations of ternary semigroups by bi-ideals

Proof. \(BSBSB \subseteq (R \cap M \cap L)S(R \cap M \cap L)S(R \cap M \cap L) \subseteq \text{RSMSL} \subseteq \text{RML} \subseteq B \) so that \(B \) is indeed a bi-ideal.

Proof. Let \(S \) be a ternary semigroup and \(B \) a bi-ideal of \(S \). If the elements of \(B \) are regular, then \(B \) is a quasi-ideal.

Proof. If \(s_1s_2b_1 = s_3b_2s_4 = b_3s_5s_6 \in SSB \cap SBS \cap BSS \) then there are \(x, y \in S \) such that \(b_1x b_1y b_1 = b_1 \). Thus \(s_1s_2b_1 = s_1s_2(b_1x b_1y b_1) = (s_1s_2b_1)x b_1y b_1 = (b_3s_5s_6) x b_1y b_1 = b_3(s_5s_6x) b_1y b_1 \in B(SSS)BSB \subseteq BSBSB \subseteq B \). This implies that \(SSB \cap SBS \cap BSS \subseteq B \). Similarly we show that \(SSB \cap SSBS \cap BSS \subseteq B \). Whence \(SSB \cap (SBS \cup SSBS) \cap BSS \subseteq B \) and \(B \) is a quasi-ideal of \(S \).

3 Minimal and 0 – Minimal Bi-Ideals in Ternary Semigroups

Definition 3.1. A bi-ideal \(U \) of a ternary semigroup \(S \) is a minimal bi-ideal if there is no bi-ideal \(T \) such that \(T \subset U \) (We use \(\subset \) for proper containment.)

Definition 3.2. A non-zero bi-ideal \(U \) of a ternary semigroup \(S = S^0 \) is a minimal bi-ideal if there is no bi-ideal \(T \), with \(\{0\} \subset T \subset U \).

Definition 3.3. A bi-ideal \(B \) of a ternary semigroup \(S = S^0 \) is called nilpotent if there exists an odd positive integer \(n \geq 3 \) such that \(B^n = \{0\} \).

Proposition 3.4. Let \(B \) be a 0 – minimal bi-ideal of a ternary semigroup \(S = S^0 \). Then \(B \) is nilpotent if and only if \(B^3 = \{0\} \).

Proof. Let \(n \geq 3 \) be an odd positive integer. Then since the product of three bi-ideals is a bi-ideal \(B^{n-2} \) is a bi-ideal which is clearly contained in \(B \) and we have \(B^{n-2} = B \) if \(B^{n-2} \neq \{0\} \). Thus \(B^n = B^3 = \{0\} \) precisely when \(B \) is nilpotent.

Definition 3.5. We will call a 0 – minimal bi-ideal \(B \) of a ternary semigroup \(S = S^0 \) a nilpotent 0 – minimal bi-ideal if \(B \) is a zero ternary subsemigroup, i.e., \(B^3 = \{0\} \).

Theorem 3.6. Let \(B \) be a nilpotent 0 – minimal bi-ideal of a ternary semigroup \(S = S^0 \). Then the following statements are equivalent:

1. some non-zero element of \(B \) is irregular
2. no non-zero element of \(B \) is regular
3. for some \(b \in B \setminus \{0\} \), \(bSbSb = \{0\} \)
4. for each \(b \in B \), \(bSbSb = \{0\} \)
(in any of the above cases B = \{b, 0\};
5. each element in B is regular
6. some non-zero element of B is regular
7. bSbSb \neq \{0\} for each b \in B\{0\}
8. bSbSb \neq \{0\} for some b \in B
(in any of these cases B is a quasi-ideal).

Proof. In any of the above cases one need consider only bSbSb for b \in B. We observe that bSbSb is a bi-ideal contained in B. Thus by the minimality of B either bSbSb = \{0\} or bSbSb = B. In cases 1 or 2 if b is irregular then bSbSb \subset B and hence bSbSb = \{0\}. Clearly \{b, 0\} is then a bi-ideal and hence B = \{b, 0\}. The equivalence of statements 1 – 4 should now be obvious.

Indeed, it is now clear that a non-zero element of B can be regular precisely when each element in B is regular. Furthermore b \neq 0 is regular iff bSbSb \neq \{0\} since in such a case bSbSb = B. It follows that each of the statements 5 – 8 are equivalent and for any of these cases B is a quasi-ideal.

Definition 3.7. For a, b \in S, a given ternary semigroup, we write aBb if 1) a = b or 2) there exist u, v, w, z \in S such that auava = b and bwbzb = a.

Preposition 3.8. The relation B defined in S is an equivalence relation.

Preposition 3.9. If A is a bi-ideal of a ternary semigroup S then A = \bigcup_{a \in A} B_a, i.e., any bi-ideal is the union of its B -classes.

Preposition 3.10. Let S be a ternary semigroup with zero 0. If a bi-ideal B is a non-zero B -class union, then it is a 0-minimal bi-ideal of S.

The converse of this preposition is also true as we show in the following:

Theorem 3.11. Let S be a ternary semigroup with zero 0. A bi-ideal B is 0-minimal if and only if it is a non-zero B -class union.

Proof. Let B be a 0-minimal bi-ideal of S = S^0. Let a, b \in B\{0\}. Since \{b, b^3\} \cup bSbSb and \{a, a^3\} \cup aSaSa are clearly non-zero bi-ideals contained in B we must have B = \{b, b^3\} \cup bSbSb = \{a, a^3\} \cup aSaSa.

Now assume a \neq b. We can proceed from the last equality by cases.
Suppose a = b^3. We have two sub-cases to consider.
1) If also b = a^3 then a = b^3 = aa^3aa^3a = b^3a^3b^3a^3b^3 = b(bba^3)b(bba^3bb)b and also b = a^3 = a(aab^3)a(aab^3aa)a. It follows that aBb.
2) If $b \neq a^3$ we must have $b \in aSaS$ and $b = auava$ for some $u, v \in S$. Then $a = b^3 = (auava)(auava)(auava) = b(bbuavaub)(bvaauavbb)b$. Again it follows that aBb.

Now if $a \neq b$ and $a \neq b^3$ we must have $a \in bSbSb$ so that $a = bwzb$ for some $w, z \in S$. again we examine b by cases as above. If $b = a^3$ we have simply case 2) with the roles of a and b interchanged. If $b \in aSaSa$ then $b = auava$ for some $u, v \in S$. In either case it follows that aBb. By we may conclude that $B = B_b \cup \{0\}$. The converse is just Preposition 3.10.

Preposition 3.12. Let S be a ternary semigroup with 0. If R is a 0−minimal right ideal, M is a 0−minimal lateral ideal and L is a 0−minimal left ideal, then either $RML = \{0\}$ or RML is a 0−minimal bi-ideal of S.

Proof. Suppose $RML \neq \{0\}$ and that there is a bi-ideal B with $\{0\} \subset B \subset RML$. Since $RML \subset R \cap M \cap L$ we have $BSS \subset (RML)SS \subset (R \cap M \cap L)SS \subset RSS \subset R$. Thus, by the minimality of R we have $BSS = R$. We also have that $SBS \subset S(RML) \subset S(R \cap M \cap L)S \subset SMS \subset M$. By the minimality of M it follows that $SBS = M$. Furthermore, we have $SSB \subset SS(RML) \subset SS(R \cap M \cap L) \subset SSL \subset L$ and since L is minimal we have $SSB = L$. Thus $B \subset RML = (BSS)(SBS)(SSB) = B(SSS)B(SSS)B \subset BSBSB \subset B$ which is a contradiction. Hence RML is 0−minimal bi-ideal.

Preposition 3.13. Let S be a ternary semigroup with 0. If B is a 0−minimal bi-ideal of S then for any right ideal R contained in BSS, any lateral ideal M contained in SBS and any left ideal L contained in SSB we have either $RML = \{0\}$ or $RML = B$.

Proof. Let $R \subset BSS, M \subset SBS$ and $L \subset SSB$. Then $RML \subset (BSS)(SBS)(SSB) = B(SSS)B(SSS)B \subset BSBSB \subset B$. Since RML is a bi-ideal and B is 0−minimal it follows that $RML = \{0\}$ or $RML = B$.

Preposition 3.14. Let S be a ternary semigroup. If B is a minimal bi-ideal of S then BSS, SBS and SSB are minimal right, lateral and left ideals of S respectively and we have $B = (BSS)(SBS)(SSB)$, i.e., B is the product of a minimal right ideal, a minimal lateral ideal and a minimal left ideal.

Proof. Let R be a right ideal, M a lateral ideal and L a left ideal of S with $R \subset BSS, M \subset SBS$ and $L \subset SSB$. Since RML is a bi-ideal with $RML \subset BSSBSSSB \subset BSBSB \subset B$ we must have $B = RML$. But $RML \subset R \cap M \cap L$ and thus $B \subset R$. Hence we have $BSS \subset RSS \subset R$ so that $R = BSS$. Therefore, BSS is a minimal right ideal. Similarly SSB is a minimal left ideal. Now $B \subset M$ implies $SBS \subset SMS \subset M$. Thus $SBS = M$. It follows that SBS is a minimal lateral ideal. Since B
is a minimal bi-ideal which contains \((BSS)(SBS)(SSB)\), itself a bi-ideal, we must have \(B = (BSS)(SBS)(SSB)\).

References

Received: December 11, 2020; Published: January 8, 2021