The Characteristic Polynomials for Abelian Varieties of Dimension 6 Over Finite Fields

Gyoyong Sohn

Department of Mathematics Education
Daegu National University of Education
Daemyung 2-dong, Daegu, Republic of Korea

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

We describe the characteristic polynomials of the Frobenious endomorphism of abelian varieties of dimension 6 over finite fields.

Mathematics Subject Classification: 14G15, 11C08, 11G10, 11G25

Keywords: Weil polynomials, Abelian varieties over finite fields

1 Basic Facts and Results

Let A be an abelian variety of dimension g over \mathbb{F}_q where $q = p^n$. Let $T_l(A)$ be the l-th Tate module of A, and $V_l(A) = T_l(A) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$ be the corresponding vector space over \mathbb{Q}_l. For $l \neq p$, the characteristic polynomial of the Frobenious endomorphism π_A of A is defined as,

$$P_A(t) = \det(\pi_A - tI_d|V_l(A)).$$

It is a monic polynomial of degree $2g$ with rational integer coefficients independent of the choice of prime l. In fact, $P_A(t)$ can be represented as

$$P_A(t) = t^{2g} + a_1t^{2g-1} + \cdots + a_g t^g + q a_{g-1} t^{g-1} + \cdots + q^{g-1}a_1 t + q^g,$$

for all $a_i \in \mathbb{Z}$ ($1 \leq i \leq g$). The set of roots $P_A(t)$ consist of couples of complex conjugated numbers of modulus \sqrt{q}. A monic polynomial with integer coefficients which satisfies this condition is called a Weil polynomial. Thus, the
characteristic polynomial of the Frobenius endomorphism of abelian varieties of dimension g is a Weil polynomial of degree $2g$, but the converse is false.

An abelian variety A is k-simple if it is not isogenous to a product of abelian varieties of lower dimensions over k. In that case, $P_A(t)$ is either irreducible over \mathbb{Z} if $P_A(t) = h(t)^e$ where $h(t) \in \mathbb{Z}[t]$ is an irreducible over \mathbb{Z}, see [7]. We have the following result from Tate [6].

Theorem 1.1 If A and B are the abelian varieties defined over \mathbb{F}_q. Then A is \mathbb{F}_q-isogenous to abelian subvariety if and only if $P_A(t)$ divides $P_B(t)$ over $\mathbb{Q}[t]$. In particular, $P_A(t) = P_B(t)$ if and only if A and B are \mathbb{F}_q-isogenous.

The Tate theorem gives us a nice description of isogeny classes of abelian varieties over \mathbb{F}_q in terms of Weil polynomials.

In this paper, we present a criterion to determine when a Weil polynomial of degree 12 is the characteristic polynomial of an abelian variety of dimension 6. Haloui gave the set of characteristic polynomial of abelian varieties of dimension 3 over finite fields[1]. Haloui and Singh gave the list of characteristic polynomials of abelian varieties of dimension 4 over finite field[2]. In [3], the characteristic polynomials of abelian varieties of dimension 5 over finite fields are described.

Throughout this paper, the Weil polynomial of degree 12 has the form

\[
P(t) = t^{12} + a_1 t^{11} + a_2 t^{10} + a_3 t^9 + a_4 t^8 + a_5 t^7 + a_6 t^6 + a_5 q t^5 + a_4 q^2 t^4 + a_3 q^3 t^3 + a_2 q^4 t^2 + a_1 q^5 t + q^6,
\]

for all $a_i \in \mathbb{Z}$ ($1 \leq i \leq 6$). The set of roots of $P(t)$ has complex numbers of the form \{\$\alpha_1, \bar{\alpha}_1, \ldots, \alpha_6, \bar{\alpha}_6$\} and the absolute value of each α_i is equal to \sqrt{q}. The following theorem gives us the set of the characteristic polynomials of the Frobenius endomorphism of abelian varieties of dimension 6 over finite fields. It determine the possible Newton polygons of $P(t)$ when $P(t)$ is irreducible ($e = 1$). Let v_p denote the p-adic additive valuation normalized as $v_p(p) = 1$.

Theorem 1.2 Let $P(t)$ be an irreducible Weil polynomial of the form (1). Then $P(t)$ is the characteristic polynomial of an abelian variety of dimension 6 if and only if one of the following conditions holds:

1. $v_p(a_6) = 0$,
2. $v_p(a_5) = 0$, $v_p(a_6) \geq n/2$ in \mathbb{Q}_p, and $P(t)$ has no root of valuation $n/2$ in \mathbb{Q}_p,
3. $v_p(a_4) = 0$, $v_p(a_5) \geq n/2$, $v_p(a_6) \geq n$ and $P(t)$ has no root of valuation $n/2$ in \mathbb{Q}_p,
4. $v_p(a_3) = 0$, $v_p(a_4) \geq n/2$, $v_p(a_5) \geq n$, $v_p(a_6) \geq 3n/2$ and $P(t)$ has no root of valuation $n/2$ and a factor of degree 3 in \mathbb{Q}_p,
5. \(v_p(a_2) = 0, v_p(a_3) \geq n/2, v_p(a_4) \geq n, v_p(a_5) \geq 3n/2, v_p(a_6) \geq 2n\) and \(P(t)\) has no root of valuation \(n/2\) nor factor of degree 3 in \(\mathbb{Q}_p\),

6. \(v_p(a_1) = 0, v_p(a_2) \geq n/2, v_p(a_3) \geq n, v_p(a_4) \geq 3n/2, v_p(a_5) \geq 2n, v_p(a_6) \geq 5n/2\) and \(P(t)\) has no root of valuation \(n/2\) nor a factor of degree 3 or 5 in \(\mathbb{Q}_p\),

7. \(v_p(a_1) \geq n/6, v_p(a_2) \geq n/3, v_p(a_3) \geq n/2, v_p(a_4) \geq 2n/3, v_p(a_5) \geq 5n/6, v_p(a_6) = n\) and \(P(t)\) has two irreducible factors of degree 6 in \(\mathbb{Q}_p\),

8. \(v_p(a_1) \geq n/3, v_p(a_2) \geq 2n/3, v_p(a_3) \geq n, v_p(a_4) \geq 4n/3, v_p(a_5) = 5n/3, v_p(a_6) = 2n\) and \(P(t)\) has two irreducible factors of degree 6 in \(\mathbb{Q}_p\),

9. \(v_p(a_3) = 0, v_p(a_4) \geq n/3, v_p(a_5) \geq 2n/3, v_p(a_6) = n\) and \(P(t)\) has no root of valuation \(n/3\) or \(2n/3\) in \(\mathbb{Q}_p\),

10. \(v_p(a_2) = 0, v_p(a_3) \geq n/4, v_p(a_4) \geq n/2, v_p(a_5) \geq 3n/4, v_p(a_6) = n\) and \(P(t)\) has no root of valuation \(n/4\) or \(3n/4\) nor an irreducible factor of degree 2 in \(\mathbb{Q}_p\),

11. \(v_p(a_1) = 0, v_p(a_2) \geq n/5, v_p(a_3) \geq 2n/5, v_p(a_4) \geq 3n/5, v_p(a_5) \geq 4n/5, v_p(a_6) = n\) and \(P(t)\) has no root of valuation \(n/5\) or \(4n/5\) in \(\mathbb{Q}_p\),

12. \(v_p(a_1) = 0, v_p(a_2) \geq 2n/5, v_p(a_3) \geq 4n/5, v_p(a_4) \geq 6n/5, v_p(a_5) \geq 8n/5, v_p(a_6) = 2n\) and \(P(t)\) has no root of valuation \(2n/5\) or \(8n/5\) in \(\mathbb{Q}_p\),

13. \(v_p(a_1) \geq n/5, v_p(a_2) \geq 2n/5, v_p(a_3) \geq 3n/5, v_p(a_4) \geq 4n/5, v_p(a_5) = n, v_p(a_6) \geq 3n/2\) and \(P(t)\) has no root of valuation \(n/5, n/2\) and \(4n/5\) in \(\mathbb{Q}_p\),

14. \(v_p(a_1) \geq 2n/5, v_p(a_2) \geq 4n/5, v_p(a_3) \geq 6n/5, v_p(a_4) \geq 8n/5, v_p(a_5) = 2n, v_p(a_6) \geq 5n/2\) and \(P(t)\) has no root of valuation \(2n/5, n/2\) and \(8n/5\) in \(\mathbb{Q}_p\),

15. \(v_p(a_1) \geq n/4, v_p(a_2) \geq n/2, v_p(a_3) \geq 3n/4, v_p(a_4) = n, v_p(a_5) = 3n/2, v_p(a_6) = 2n\) and \(P(t)\) has no root of valuation \(n/4, n/2\) and \(3n/4\) in \(\mathbb{Q}_p\),

16. \(v_p(a_1) \geq n/3, v_p(a_2) \geq 2n/3, v_p(a_3) = n, v_p(a_4) \geq 3n/2, v_p(a_5) = 2n, v_p(a_6) \geq 5n/2\) and \(P(t)\) has no root of valuation \(n/3, n/2\) and \(2n/3\) in \(\mathbb{Q}_p\),

17. \(v_p(a_1) \geq n/2, v_p(a_2) \geq n, v_p(a_3) \geq 3n/2, v_p(a_4) \geq 2n, v_p(a_5) \geq 5n/2, v_p(a_6) \geq 3n\) and \(P(t)\) has no root nor factor of degree 3 or 5 in \(\mathbb{Q}_p\).

2 Newton Polygons

Let \(P(t)\) be an irreducible Weil polynomial of degree 12. By [4], \(P(t)\) is the characteristic polynomial of an abelian variety of dimension 6 if and only if \(e = 1\) for \(P(t)^e\), where \(e\) the least common denominator of \(v_p(f(0))/n\) where \(f(t)\) runs through the irreducible factors of \(P(t)\) over \(\mathbb{Q}_p\). Thus, we consider the Newton polygons of \(P(t)\) over \(\mathbb{Q}_p\) in order to determine when this condition is satisfied. It means the lower envelope of the set of points \(\{(i, v_p(a_i))|0 \leq i \leq 2g\}\)
Gyeyong Sohn

in $\mathbb{R} \times \mathbb{R}$, where v_p is the p-adic valuation of \mathbb{Q}_p. Its shape leads to a decomposition of $P(t)$ over \mathbb{Q}_p. We denote by ν_p the unique extension of the p-adic valuation v_p to the algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p, normalized so that $\nu_p(p) = 1$. Then we can be divided into six cases of the Newton polygons of $P(t)$ with regard to decomposition form of $P(t)$ over \mathbb{Q}_p. There are called ordinary, supersingular, symmetry, Mixed I, Mixed II, and Mixed III. The obtained results are summarized in Theorem 1.2.

Case 1: Ordinary

In this case, the Newton polygon of $P(t)$ is represented in Figure 1. The Newton polygon has a segment of length 6 and with slope 0. This is the Newton polygon of $P(t)$ if and only if $v_p(a_6) = 0$. Then we have $\nu_p(\alpha_i) = 0$ for α_i roots of $P(t)$, $1 \leq i \leq 6$, and we have always $e = 1$.

![Figure 1: Ordinary case](image)

Case 2: Symmetry

In this case, there are two Newton polygons as in Figure 2. There is an integer λ satisfying $0 < \lambda < 1/2$. We have $\nu_p(\alpha_i) = \lambda n$ for $1 \leq i \leq 6$. First, we consider the upper polygon in Figure 2. The Newton polygon of $P(t)$ has two segments from the right with slopes $-n/3$ and $-2n/3$, respectively. This is the Newton polygon of $P(t)$ if and only if $v_p(a_1) \geq n/3$, $v_p(a_2) \geq 2n/3$, $v_p(a_3) \geq n$, $v_p(a_4) \geq 4n/3$, $v_p(a_5) \geq 5n/3$, $v_p(a_6) = 2n$. If this condition hold, $P(t)$ has two factors of degree 6 in \mathbb{Q}_p, one with roots of valuation $1/3$ and the other with roots of valuation $2/3$. Then $e = 1$ if and only if $P(t)$ has two irreducible factors of degree 6 in \mathbb{Q}_p.

Second, we consider the lower polygon in Figure 2. The Newton polygon has two segments from the right with slopes $-n/6$ and $-5n/6$, respectively. This is the Newton polygon of $P(t)$ if and only if $v_p(a_1) \geq n/6$, $v_p(a_2) \geq n/3$, $v_p(a_3) \geq n/2$, $v_p(a_4) \geq 2n/3$, $v_p(a_5) \geq 5n/6$, $v_p(a_6) = n$. Hence $e = 1$ if and only if $P(t)$ has two irreducible factors of degree 6 in \mathbb{Q}_p with roots of valuation $1/6$ and $5/6$, respectively.

Case 3. Mixed I

In this case, there are five Newton polygons as in Figure 3. The Newton
The characteristic polynomials for abelian varieties of dimension 6 over ...

Figure 2: Symmetry case

polygon of $P(t)$ has the segments from the right with slope $0, -n/2$ and $-n$, respectively. Then we have $\nu_p(\alpha_i) = 0$ and $\nu_p(\alpha_j) = n/2$ for some i, j.

Figure 3: Mixed I case

First, we consider p-rank 5. This is the Newton polygon of $P(t)$ if and only if $v_p(a_5) = 0, v_p(a_6) \geq n/2$. If this conditions holds, $P(t)$ has a factor in \mathbb{Q}_p of degree 2 with roots of valuation $n/2$ and thus $e = 1$ if and only if this factor is irreducible, that is, if and only if $P(t)$ has no root of valuation $n/2$ in \mathbb{Q}_p.

Second, we consider p-rank 4. This is the Newton polygon of $P(t)$ if and only if $v_p(a_4) = 0, v_p(a_5) \geq n/2, v_p(a_6) \geq n$. If this conditions holds, $e = 1$ if and only if $P(t)$ has no root of valuation $n/2$ in \mathbb{Q}_p.
Third, we consider p-rank 3. This is the Newton polygon of $P(t)$ if and only if $v_p(a_3) = 0$, $v_p(a_4) \geq n/2$, $v_p(a_5) \geq n$, $v_p(a_6) \geq 3n/2$. If this conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/2$ nor a factor of degree 3 in \mathbb{Q}_p.

Fourth, we consider p-rank 2. This is the Newton polygon of $P(t)$ if and only if $v_p(a_2) = 0$, $v_p(a_3) \geq n/2$, $v_p(a_4) \geq n$, $v_p(a_5) \geq 3n/2$, $v_p(a_6) \geq 2n$. If this conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/2$ nor a factor of degree 3 in \mathbb{Q}_p.

Fifth, we consider p-rank 1. This is the Newton polygon of $P(t)$ if and only if $v_p(a_1) = 0$, $v_p(a_2) \geq n/2$, $v_p(a_3) \geq n$, $v_p(a_4) \geq 3n/2$, $v_p(a_5) \geq 2n$, $v_p(a_6) \geq 5n/2$. If these conditions holds, $e = 1$ if and only if $P(t)$ has no root of valuation $n/2$ nor a factor of degree 3 or 5 in \mathbb{Q}_p.

Case 4 : Mixed II

In this case, there are four Newton polygons as in Figure 4. The Newton polygon has the segments from the right with slopes 0, $-\lambda n$, $-(1-\lambda)n$, and $-n$ for $\lambda \in \mathbb{Z}$, $1 < \lambda < 1/2$. Then we have the valuation $\nu_p(\alpha_i) = 0$ and $\nu_p(\alpha_j) = n/2$ for some i, j.

![Figure 4: Mixed II case](image)

First, we consider p-rank 3. This is the Newton polygon of $P(t)$ if and only if $v_p(a_3) = 0$, $v_p(a_4) \geq n/3$, $v_p(a_5) \geq 2n/3$, $v_p(a_6) = n$. If this conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/3$ or $2n/3$ in \mathbb{Q}_p.

Second, we have p-rank 2. This is the Newton polygon of $P(t)$ if and only if $v_p(a_2) = 0$, $v_p(a_3) \geq n/4$, $v_p(a_4) \geq n/2$, $v_p(a_5) \geq 3n/4$, $v_p(a_6) = n$. If this conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/4$ or $3n/4$ nor an irreducible factor of degree 2 in \mathbb{Q}_p.

Third, we consider the upper polygon in p-rank 1. This is the Newton
polygon of $P(t)$ if and only if $v_p(a_1) = 0$, $v_p(a_2) \geq 2n/5$, $v_p(a_3) \geq 4n/5$, $v_p(a_4) \geq 6n/5$, $v_p(a_5) \geq 8n/5$, $v_p(a_6) = 2n$. If these conditions holds, $e = 1$ if and only if $P(t)$ has no root of valuation $2n/5$ or $8n/5$ in \mathbb{Q}_p.

Fourth, we consider the lower polygon in p-rank 1. This is the Newton polygon of $P(t)$ if and only if $v_p(a_1) = 0$, $v_p(a_2) \geq n/5$, $v_p(a_3) \geq 2n/5$, $v_p(a_4) \geq 3n/5$, $v_p(a_5) \geq 4n/5$, $v_p(a_6) = n$. If these conditions holds, $e = 1$ if and only if $P(t)$ has no root of valuation $n/5$ or $4n/5$ in \mathbb{Q}_p.

Case 5 : Mixed III

In this case, there are four Newton polygons of Figure 5. The Newton polygon has the segments from the right with slopes 0, $-\lambda n$, $-(1-\lambda)n$, and $-n$ for $\lambda \in \mathbb{Z}$, $1 < \lambda < 1/2$. Then we have the valuation $v_p(\alpha_i) = 0$ and $v_p(\alpha_j) = n/2$ for some i, j.

![Figure 5: Mixed III case](image)

First, we consider the upper polygon in the upper left side of Figure 5. This is the Newton polygon of $P(t)$ has $v_p(a_1) \geq n/5$, $v_p(a_2) \geq 2n/5$, $v_p(a_3) \geq 3n/5$, $v_p(a_4) \geq 4n/5$, $v_p(a_5) = n$, $v_p(a_6) \geq 3n/2$. If these conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/5$, $n/2$ and $4n/5$ in \mathbb{Q}_p.

Second, we consider the lower polygon in the upper left side of Figure 5. This is the Newton polygon of $P(t)$ has $v_p(a_1) \geq 2n/5$, $v_p(a_2) \geq 4n/5$, $v_p(a_3) \geq 6n/5$, $v_p(a_4) \geq 8n/5$, $v_p(a_5) = 2n$, $v_p(a_6) \geq 5n/2$. If these conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $2n/5$, $n/2$ and $8n/5$ in \mathbb{Q}_p.

Third, we consider the polygon of the upper right side. This is the Newton polygon of $P(t)$ if and only if $v_p(a_1) \geq n/4$, $v_p(a_2) \geq n/2$, $v_p(a_3) \geq 3n/4$, $v_p(a_4) = n$, $v_p(a_5) = 3n/2$, $v_p(a_6) = 2n$. If these conditions hold, $e = 1$ if and only if $P(t)$ has no root of valuation $n/4$, $n/2$ and $3n/4$ in \mathbb{Q}_p.

Fourth, we consider the polygon of the lower position of Figure 5. This is the
Newton polygon of \(P(t) \) if and only if \(v_p(a_1) \geq n/3, v_p(a_2) \geq 2n/3, v_p(a_3) = n, v_p(a_4) \geq 3n/2, v_p(a_5) = 2n, v_p(a_6) \geq 5n/2 \). If this conditions hold, \(e = 1 \) if and only if \(P(t) \) has no root of valuation \(n/3, n/2 \) and \(2n/3 \) in \(\mathbb{Q}_p \).

Case 6. Supersingular

In this case, there is one Newton polygon of \(P(t) \) as in Figure 6.

This is the Newton polygon of \(P(t) \) if and only if \(v_p(a_1) \geq \frac{n}{2}, v_p(a_2) \geq n, v_p(a_3) \geq \frac{3}{2}n, v_p(a_4) \geq 2n, v_p(a_5) \geq \frac{5}{2}n, v_p(a_6) \geq 3n \). If this condition holds, \(e = 1 \) if and only if \(P(t) \) has no root nor factor of degree 3 or 5 in \(\mathbb{Q}_p \).

![Figure 6: Supersingular case](image)

References

Received: March 25, 2020; Published: April 7, 2020