A Brief Note on Absolute Valued Algebras with Involution

Oussama Fayz and Abdellatif Rochdi

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II, 7955 Casablanca, Morocco

Abstract

We give some necessary and sufficient conditions giving rise to the finite dimensionality of any absolute-valued algebra with involution.

Mathematics Subject Classification: 17A35, 17A80

Keywords: Absolute-valued algebra, involution, central idempotent

1. Introduction

An absolute-valued algebra is a non-zero real algebra A endowed with a norm $||.||$ such that $||xy|| = ||x|| ||y||$ for all $x, y \in A$. From their appearance in [Os 18], the absolute-valued algebras have attracted the attention of many mathematicians [A 47], [UW 60], [CR 14], and physicists [Ok 78]. This is due to their beauty and diversity. Subsequently, work on absolute-valued algebras has succeeded one another and continues to do so until today.

Since the first paper on absolute-valued algebras with involution [U 61], several works in the same theme have emerged and continue to do so until today [G 63], [Elm 88, 90], [Rod 04], [BR 05], [EERR 06], [RR 09], [CR 14].

Let A be an absolute-valued algebra A with involution $x \mapsto \overline{x}$. By putting $x \diamond y = \overline{xy}$ on the normed space A we get a new absolute-valued algebra (A, \diamond) called the cracovian of A [G 63]. This apparently provides the first example of infinite-dimensional absolute-valued algebras satisfying non-trivial identities, like $(x^2, y, x^2) = 0$ [EE 04], [CRR 12, Proposition 4.6], [DDFR].
Also, any absolute-valued algebras with involution satisfying an identity of the form \((x^p, x^q, x^r) = 0\), with \(p, q, r \in \{1, 2\}\), is finite-dimensional [Ch-R 08].

The existence of infinite-dimensional absolute-valued algebras is ensured even if the algebra is endowed with an involution [U 61] and having a non-zero central idempotent [Elm 88, Lemma 3.2]. Also, the infinite-dimensionality happen even for left-division absolute-valued algebras with left-unit [Cu 92], [Rod 92, 04].

Motivated by these facts, we became interested in conditions ensuring the finite dimensionality of any absolute-valued algebra with non-trivial involution. In section 2 we introduce the basic tools for the study of absolute-valued algebras \(A\) with a non-trivial involution. We show that if \(A\) contains a non-zero central element not collinear with a certain idempotent, then \(A\) is finite-dimensional and isomorphic to either \(\mathbb{C}\) or \(\mathbb{C}^\ast\) (Proposition 1).

The paper ends, in section 3, with the main result.

\[\text{2. Definitions and Notations}\]

Let \(A\) be a non-associative real algebra. We denote by \(L_x\) (resp \(R_x\)) the operator of left-multiplication (resp. right-multiplication) by \(x \in A\).

We also denote by \([x, y]\) (resp. \((x, y, z)\)) the commutator of \(x, y \in A\) (resp. the associator of \(x, y, z \in A\)). An element \(x \in A\) is said to be central if \([x, A] = 0\). It is said to left-invertible (resp. right-invertible) if \(L_x\) (resp. \(R_x\)) is bijective. It is said to invertible if both \(L_x, R_x\) are bijective. The algebra \(A\) is said to be left-division algebra (resp. right-division algebra) if \(L_x\) (resp. \(R_x\)) is bijective for all non-zero \(x \in A\). It is said to be a division algebra if both \(L_x, R_x\) are bijective for all non-zero \(x \in A\).

Let \(a_1, \ldots, a_n\) be in \(A\). We denote by \(\text{Lin}\{a_1, \ldots, a_n\}\) the lineal hull spanned by \(\{a_1, \ldots, a_n\}\).

An absolute-valued algebra is a real vector space \(A\) is endowed with a norm \(||.||\) such that \(||xy|| = ||x|| \cdot ||y||\) for all \(x, y \in A\). An involution over \((A, ||.||)\) is a linear mapping \(\sigma : A \to A\) \(x \mapsto \overline{x}\) satisfying the following conditions [U 61], [Rod 08]:

\[
\begin{align*}
(1) & \quad \overline{\overline{x}} = x \\
(2) & \quad x\overline{x} = \overline{x}x \\
(3) & \quad \overline{xy} = \overline{y} \overline{x}
\end{align*}
\]

for all \(x, y \in A\).

According to [U 61], there exists a distinguished element \(e \in A\) satisfying \(x\overline{x} = ||x||^2 e\) for every \(x \in A\), the absolute value of \(A\) derives from an inner product, \(A_\alpha := \{x \in A : \overline{x} = x\}\) is orthogonal to \(A_\beta := \{x \in A : \overline{x} = -x\}\), and elements of \(A_\alpha\) commute with those of \(A_\beta\). Clearly, the element \(e\) above is the unique nonzero self-adjoint idempotent of \(A\). We put \(B := \Re e \oplus A_\alpha\),
and we note that B is a subalgebra of A [Elm 88, Lemma 3.1] and that the idempotent e is central in B.

We state the following result keeping the above notation:

Proposition 1. If $A_s \neq \{0\}$ and A contains a non-zero central element a not collinear with e then A is finite-dimensional and isomorphic to either \mathbb{C} or \mathbb{C}^*.

Proof. For every $x \in A_s$ we have $[x, e] = 0$ [U 61, Lemma 1]. On the other hand $[x, a] = 0$ because a is a central element. As e, a are linearly independent, we deduce that $x \in \text{Lin}\{e, a\}$ [Elm 83, Lemme 1.1]. So the underlying space of the subalgebra $B = \mathbb{R}e \oplus A_s$ coincides with $\text{Lin}\{e, a\}$. Therefore B is a 2-dimensional commutative algebra, isomorphic to either \mathbb{C} or \mathbb{C}^*. Now [Elm 88, Lemma 1.2] concludes. \hfill \Box

3. The main result

Let A be an absolute-valued algebra with an involution.

We need the following preliminary result:

Lemma 1. Let $a \in A$. The following two statements are equivalents:

1. a is left-invertible.
2. $\sigma(a)$ is right-invertible.

Proof. For every $x, y \in A$ we have $\sigma(xy) = \sigma(y)\sigma(x)$ which can be expressed by the following equality:

\begin{equation}
\sigma \circ L_x = R_{\sigma(x)} \circ \sigma.
\end{equation}

Taking into account that $\sigma^2 = I_A$ the equality (9) gives $R_{\sigma(x)} = \sigma \circ L_x \circ \sigma$ and shows the implication (1) \Rightarrow (2). Also equality (9) gives $L_x = \sigma \circ R_{\sigma(x)} \circ \sigma$ and shows the implication (2) \Rightarrow (1). \hfill \Box

Theorem 1. Let A be an absolute-valued algebra with involution σ. The following seven statements are equivalents:

1. L_a is bijective for some $a \in A$.
2. R_b is bijective for some $b \in A$.
3. A is left-division algebra,
4. A is right-division algebra,
5. A is division algebra,
6. A is finite-dimensional,
7. The subalgebra $\mathbb{R}e \oplus A_s$ of A is a finite-dimensional.

Proof. Since σ is surjective, the equivalences (1) \Leftrightarrow (2), (3) \Leftrightarrow (4) follow from Lemma 1. The implications (6) \Rightarrow (3) \Rightarrow (1), (6) \Rightarrow (5), (6) \Rightarrow (7) are clear. The implication (5) \Rightarrow (6) follows from [W 53]. The implication (7) \Rightarrow (6) is proved in [Elm 88]. Finally, the implication (1) \Rightarrow (6) is an immediate consequence of the equivalence (1) \Leftrightarrow (2) and [Rod 04, Theorem 2.2]. \hfill \Box
Remark 1. The implications (1) ⇒ (3), (2) ⇒ (4) in Theorem 1 does not require that \(\mathcal{A} \) be an absolute-valued algebra [CR 14, Proposition 2.7.19].

A non-trivial identity in a real algebra is an identity which is not satisfied in arbitrary real algebras.

Taking into account [Rod 92, 04], [Cu 92] and the existence of infinite-dimensional absolute-valued algebras satisfying \((x^2, y, x^2) = 0\) [EE 04], [CRR 12, Prop. 4.6], it is relevant to know if there are infinite-dimensional absolute-valued algebras which satisfy some non-trivial identities, namely \((x^2, y, x^2) = 0\), and having left invertible elements.

References

[5] [Ch-R 08] A. Chandid and A. Rochdi, A survey on absolute valued algebras satisfying \((x^i, x^j, x^k) = 0\), Int. J. Algebra, 2 (2008), 837-852.
[7] [DDFR] K. Diaby, O. Diankha, A. Fall, and A. Rochdi, On absolute valued algebras satisfying \((x^2, y, x^2) = 0\), submitted.
A brief note on absolute valued algebras with involution

Received: October 21, 2020; Published: November 30, 2020