A Construction of Semigroups
Whose Elements Are Middle Units

Attila Nagy and Olivér Nagy

Department of Algebra, Institute of Mathematics
Budapest University of Technology and Economics
1521 Budapest, Pf. 91, Hungary

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2020 Hikari Ltd.

Abstract
An element a of a semigroup S is said to be a middle unit of S if $xay = xy$ is satisfied for every $x, y \in S$. In this paper we show how to construct semigroups in which every element is a middle unit.

Mathematics Subject Classification: 20M10

Keywords: semigroup; left equalizer simple semigroup; middle unit of a semigroup; rectangular band

1 Introduction and motivation

In [6], P.M. Cohn gave necessary and sufficient conditions for a semigroup to be embeddable into a left simple semigroup. The conditions differ essentially according to whether or not the semigroup contains an idempotent element (i.e. an element e satisfying $e^2 = e$). In both cases a necessary condition is the following: for every $a, b \in S$, if $xa = xb$ is satisfied for some $x \in S$, then $sa = sb$ is satisfied for all $s \in S$. By [11, Definition 2], a semigroup S satisfying this condition is called a left equalizer simple semigroup. In [11], a complete description of left equalizer simple semigroups is given. It is proved in [11, Theorem 2.2] that a semigroup is left equalizer simple if and only if it is isomorphic to a semigroup defined in [11, Construction 1].

1This work was supported by the National Research, Development and Innovation Office NKFIH, 115288.
An element a of a semigroup S is called a middle unit of S if $xay = xy$ is satisfied for all $x, y \in S$. Semigroups with middle units are examined in many papers (see, for example, [1], [2], [3], [8]). In our present paper we concentrate our attention on semigroups in which every element is a middle unit. The reason for this attention is that these semigroups are left equalizer simple. This fact motivates us to try to construct them. We give a special case of [11, Construction 1], and prove that a semigroup S has the property that every element of S is a middle unit of S if and only if S is isomorphic to a semigroup defined in this construction.

A semigroup in which every element is an idempotent element is called a band. By [7, Proposition 3.2], every semigroup satisfying the identity $axa = a$ is a band; a semigroup with this property is called a rectangular band. It is known (see, for example, [12, II.1.3. Lemma]) that a band B is a rectangular band if and only if every element of B is a middle unit of B. We prove that the rectangular bands are exactly the left equalizer simple bands. Moreover, we show how to obtain them by using a special case of [11, Construction 1].

2 Preliminaries

By a semigroup we shall mean a multiplicative semigroup, that is, a non-empty set together with an associative multiplication. Let S be a semigroup and G^0 be a semigroup arising from a one-element group $G = \{1\}$ by adjunction of a zero element 0. By an $S \times S$ matrix over G^0 we mean a mapping of $S \times S$ into G^0. Let A be an $S \times S$ matrix over G^0. For an element $s \in S$, the set \{A(s, x) : x \in S\} is called the s−row of A. An $S \times S$ matrix A over G^0 is called strictly row-monomial if each row of A contains exactly one non-zero element of G^0. It is clear that, for every element $s \in S$, the $S \times S$ matrix $R(s)$ over G^0 defined by

$$R(s) : (a, b) \mapsto \begin{cases} 1, & \text{if } as = b \\ 0, & \text{otherwise} \end{cases}$$

is strictly row-monomial, and $s \mapsto R(s)$ ($s \in S$) is a representation of the semigroup S by strictly row-monomial $S \times S$ matrices over G^0 (see [4, Exercise 4(b) for §35]). This representation is also called the right regular (matrix) representation of S.

Let θ denote the kernel of the homomorphism $s \mapsto R(s)$ ($s \in S$). It is clear that

$$\theta = \{(a, b) \in S \times S : xa = xb \text{ for all } x \in S\}.$$

A non-empty subset L of a semigroup S is called a left ideal of S if $sa \in L$ for every $s \in S$ and $a \in L$. A semigroup is called a left simple semigroup if it does not properly contain any left ideal. It is known (see [4, pp. 6]) that a semigroup S is left simple if and only if $Sa = S$ for every $a \in S$.

A construction of semigroups whose elements are middle units

The investigation of left equalizer simple semigroups is based on the result of [11, Theorem 2.1]: a semigroup S is left equalizer simple if and only if the factor semigroup S/θ is left cancellative (a semigroup A is left cancellative if $xa = xb$ implies $a = b$ for every $x, a, b \in A$). Starting from a left cancellative semigroup, a special type of semigroups are defined in [11, Construction 1], and it is proved in [11, Theorem 2.2] that a semigroup is left equalizer simple if and only if it is isomorphic to a semigroup defined in [11, Construction 1].

This construction also plays an important role in our present investigation. Thus we cite it here.

Construction 1 ([11, Construction 1]) Let T be a left cancellative semigroup. For each $t \in T$, associate a nonempty set S_t such that $S_t \cap S_r = \emptyset$ for every $t, r \in T$ with $t \neq r$. As T is left cancellative, $x \mapsto tx$ is an injective mapping of T onto tT. For arbitrary couple $(t, r) \in T \times T$ with $r \in tT$, let $\varphi_{t,r}$ be a mapping of S_t into S_r. For all $t \in T$, $r \in tT$, $q \in rT \subseteq tT$ and $a \in S_t$, assume

\[(a) \varphi_{t,r} \circ \varphi_{r,q} = (a)\varphi_{t,q}. \quad (1)\]

On the set $S = \bigcup_{t \in T} S_t$ define an operation \star as follows: for arbitrary $a \in S_t$ and $b \in S_x$, let

\[a \star b = (a)\varphi_{t,tx}. \quad (2)\]

If $a \in S_t$, $b \in S_x$, $c \in S_y$ are arbitrary elements then

\[a \star (b \star c) = a \star (b)\varphi_{x,xy} = (a)\varphi_{t,t(xy)} =\]

\[= (a) \varphi_{t,tx} \circ \varphi_{tx,t(xy)} = (a)\varphi_{t,tx} \star c = (a \star b) \star c.\]

Thus the operation \star is associative, and so $S = \bigcup_{t \in T} S_t$ is a semigroup under the operation \star. This semigroup will be denoted by $(S; T, S_t, \varphi_{t,r}, \star)$.

Proposition 2 ([11, Theorem 2.2]) A semigroup is left equalizer simple if and only if it is isomorphic to a semigroup $(S; T, S_t, \varphi_{t,r}, \star)$ defined in Construction 1. \[\square\]

The following lemma will be used in our investigation several times.

Lemma 3 In a semigroup $(S; T, S_t, \varphi_{t,r}, \star)$ defined in Construction 1, the θ-classes are the sets S_t, and the factor semigroup $(S; T, S_t, \varphi_{t,r}, \star)/\theta$ is isomorphic to T.

Proof. As the semigroup T is left cancellative, it is left reductive, that is, for arbitrary $a, b \in T$ if $xa = xb$ for all $x \in T$, then $a = b$. Thus, by [10, Theorem 1], the θ-classes of $(S; T, S_t, \varphi_{t,r}, \star)$ are the sets S_t. As $S_t \star S_r \subseteq S_{tr}$ for every $t, r \in T$, the factor semigroup $(S; T, S_t, \varphi_{t,r}, \star)/\theta$ is isomorphic to T. \[\square\]

For notations and notions not defined in this paper, we refer to the books [4], [5], [9] and [12].
3 Semigroups whose elements are middle units

A semigroup satisfying the identity \(ab = a\) \([ab = b]\) is called a left [right] zero semigroup.

Proposition 4 Every element of a semigroup \(S\) is a middle unit of \(S\) if and only if the factor semigroup \(S/\theta\) is a right zero semigroup.

Proof. The equation \(xay = xy\) is satisfied for all \(x, a, y \in S\) if and only if \((ay, y) \in \theta\) for all \(a, y \in S\), that is, the factor semigroup \(S/\theta\) is a right zero semigroup. \(\Box\)

It is clear that every right zero semigroup is left cancellative. Thus the semigroups \((S; T, S_t, \varphi_{t,r}, \ast)\) can be defined in that case when \(T\) is a right zero semigroup.

Theorem 5 A semigroup has the property that its every element is a middle unit if and only if it is isomorphic to a semigroup \((S; T, S_t, \varphi_{t,r}, \ast)\) defined in Construction 1, where \(T\) is a right zero semigroup.

Proof. Let \((S; T, S_t, \varphi_{t,r}, \ast)\) be a semigroup defined in Construction 1, where \(T\) is a right zero semigroup. By Lemma 3, the factor semigroup \((S; T, S_t, \varphi_{t,r}, \ast)/\theta\) is isomorphic to \(T\). From Proposition 4 it follows that every element of the semigroup \((S; T, S_t, \varphi_{t,r}, \ast)\) is a middle unit.

Conversely, let \(S\) be a semigroup in which every element is a middle unit. By Proposition 4, \(S/\theta\) is a right zero semigroup. As a right zero semigroup is left cancellative, the semigroup \(S\) is left equalizer simple by [11, Theorem 2.1]. Then, by Proposition 2, \(S\) is isomorphic to a semigroup \((S; T, S_t, \varphi_{t,r}, \ast)\) defined in Construction 1. By Lemma 3, \(T\) is isomorphic to the factor semigroup \((S; T, S_t, \varphi_{t,r}, \ast)/\theta\). Thus \(T\) is a right zero semigroup. \(\Box\)

In the next example, we give a semigroup whose elements are middle units.

Example 6 Let \(T\) be a right zero semigroup. Let \(S_t\) \((t \in T)\) be pairwise disjoint nonempty sets. Fix an element \(s_t^*\) in \(S_t\) for every \(t \in T\). For every \(t, r \in T\), let \(\varphi_{t,r}\) be the mapping of \(S_t\) into \(S_r = S_{tr}\) defined by \((a)\varphi_{t,r} = s_t^*\). It is easy to see that this system of mappings satisfies condition (1) of Construction 1. Let \(S = \cup_{t \in T} S_t\), and define an operation \(\ast\) on \(S\) as in (2) of Construction 1. Then the semigroup \((S; T, S_t, \varphi_{t,r}, \ast)\) defined by Construction 1 is a semigroup in which every element is a middle unit. For example, if \(T = \{x, y\}\), \(S_x = \{a, b\}\), \(s_x^* = a\), \(S_y = \{c\}\), \(s_y^* = c\), then the Cayley multiplicative table of \((S; T, S_t, \varphi_{t,r}, \ast)\) is the following:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(b)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
</tbody>
</table>
It is easy to see that every element of \((S; T, S_t, \varphi_{t, r}, \ast)\) is a middle unit, indeed.

4 Left equalizer simple bands

Lemma 7 ([12, II.1.3. Lemma, II.1.5. Lemma]) On an arbitrary semigroup \(S\), the following conditions are equivalent.

1. \(S\) is a rectangular band.
2. \(S\) is a band which satisfies the identity \(abc = ac\) (that is, every element of \(S\) is a middle unit).
3. \(S\) is a direct product of a left zero semigroup and a right zero semigroup.

Theorem 8 A band is left equalizer simple if and only if it is a rectangular band.

Proof. Let \(S\) be a left equalizer simple band. Then, for every \(b, c \in S\), we have \(b(bc) = bc\) and so \(abc = ac\) is satisfied for all \(a \in S\). Thus \(S\) satisfies the identity \(abc = ac\). By Lemma 7, \(S\) is a rectangular band.

Conversely, assume that \(S\) is a rectangular band. Let \(a, b \in S\) be arbitrary elements. Assume that \(xa = xb\) is satisfied for some \(x \in S\). Then, for every \(s \in S\),

\[
\begin{align*}
sa &= sxa = sxb = sb.
\end{align*}
\]

Hence \(S\) is left equalizer simple.

Proposition 9 A band is embeddable into a left simple semigroup if and only if it is a left zero semigroup.

Proof. Assume that a band \(B\) is embeddable into a left simple semigroup \(S\). By Lemma 3, \(Se = S\) for every idempotent element \(e\) of \(S\). Thus the idempotent elements of \(S\) are right identity elements of \(S\) and so \(ef = e\) is satisfied for every \(e, f \in B\). Hence \(B\) is a left zero semigroup. As a left zero semigroup is left simple, the proposition is proved.

In the next we give a construction which is a special case of Construction 1.

Construction 10 Let \(R\) be a right zero semigroup and \(L\) a non-empty set. For every \(e \in R\), let \(L_e\) denote a set such that there is a bijective mapping \(\tau_e\) of \(L\) onto \(L_e\), moreover \(L_e \cap L_f = \emptyset\) for all element \(e\) and \(f\) of \(R\) with \(e \neq f\). For every \(a \in L\) and \(e \in R\), let \(a_e\) denote the element \(\tau_e(a)\). For every couple
(e, f) ∈ R × R, let \(\varphi_{e,f} \) be the following mapping of \(L_e \) onto \(L_f \): for every \(a_e \in L_e \),
\[
(a_e)\varphi_{e,f} = a_f. \tag{3}
\]
It is easy to see that this system of mappings satisfies condition (1) of Construction 1. Let \(B = \bigcup_{e \in R} L_e \), and define an operation \(* \) on \(S \) as in (2) of Construction 1: for every \(a_e \in L_e \) and \(b_f \in L_f \), let
\[
a_e * b_f = (a_e)\varphi_{e,f} = a_f. \tag{4}
\]
By Construction 1, we can consider the semigroup \((B; R, L_e, \varphi_{e,f}, *)\).

Theorem 11 A semigroup \((B; R; L_e, \varphi_{e,f}, *)\) defined in Construction 10 is a rectangular band. Moreover, every rectangular band is isomorphic to a semigroup defined in Construction 10.

Proof. Let \(a_e \in L_e \subseteq B \) be an arbitrary element. Then
\[
a_e * a_e = (a_e)\varphi_{e,e} = a_e.
\]
Thus \(B \) is a band. Let \(a_e, b_f \in B \) be arbitrary elements with \(a_e \in L_e \), \(b_f \in L_f \). Then
\[
a_e * b_f = (a_e)\varphi_{e,f} = a_f * a_e = a_e.
\]
Hence \((B; R; L_e, \varphi_{e,f}, *)\) is a rectangular band.

Conversely, let \(B \) be a rectangular band. By Lemma 7, \(B \) is a direct product of a left zero semigroup \(L \) and a right zero semigroup \(R \). Let
\[
L_e = L \times \{e\} = \{(a, e) : a \in L\} \quad (e \in R).
\]
It is clear that, for every \(e \in R \),
\[
\tau_e : a \mapsto (a, e) ; \quad a \in L
\]
is a bijection of \(L \) onto \(L_e \). Let the element \((a, e) \in L_e \) denoted by \(a_e \). For every \(e, f \in R \), let \(\varphi_{e,f} \) be a mapping of \(L_e \) into \(L_f \) defined by (3) of Construction 10: for every \(a_e \in L_e \),
\[
(a_e)\varphi_{e,f} = a_f.
\]
Consider the semigroup \((B; R, L_e, \varphi_{e,f}, *)\) in which the operation is defined by (4) of Construction 10: for every \(a_e \in L_e \) and \(b_f \in L_f \),
\[
a_e * b_f = (a_e)\varphi_{e,f} = a_f.
\]
As
\[
a_e * b_f = a_f = (a, f) = (a, e)(b, f) = a_e b_f
\]
for every \(e, f \in R \) and \(a_e \in L_e \), \(b_f \in L_f \), the semigroup \((B; R, L_e, \varphi_{e,f}, *)\) is isomorphic to the band \(B \).
\(\square \)
A construction of semigroups whose elements are middle units

References

Received: January 14, 2020; Published: February 24, 2020