BiHom-Poisson Algebra and Its Application

Xiaojie Li

College of Mathematics and Computer Science
Zhejiang Normal University
Jinhua, Zhejiang, 321004 P. R. China

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract
In this paper, we introduce BiHom-Poisson algebra and give some ways to construct a BiHom-Poisson algebra.

Mathematics Subject Classification: 16E45, 16S10, 17B35, 17B63

Keywords: BiHom-Poisson algebra, tensor product, twisting map

1 Introduction

A Poisson algebra \((A, \{-, -\}, \mu)\) consists of a commutative associative \((A, \mu)\) together with a Lie algebra structure \(\{-, -\}\), satisfying the Leibniz identity:

\[\{\mu(x, y), z\} = \mu(\{x, z\}, y) + \mu(x, \{y, z\})\]

Poisson algebras are used in many fields in mathematics and physics. In mathematics, Poisson algebras play a fundamental role in Poisson geometry [4], quantum groups [9, 10] and deformation of commutative associative algebras [6]. In physics, Poisson algebras are a major part of deformation quantization[7], Hamiltonian mechanics[1] and topological field theories[2].

Algebras of Hom-type appeared in the physics literature of 1990’s, in the context of quantum deformations of some algebras of vector fields. A generalization has been given in [8], where a construction of Hom-category including a group action led to concepts of BiHom-type algebras. Hence, BiHom-associative algebras and BiHom-Lie algebras, involving two linear maps(called
structure maps), were introduced. The main axioms for these types of algebras (BiHom-associativity, BiHom-skew-symmetry and BiHom-Jacobi condition) were dictated by categorical considerations.

The purpose of this paper is to study a twisted generalization of Poisson algebras, called BiHom-Poisson algebras. In a BiHom-Poisson algebra A, there are two linear self-maps α, β and two binary operations $\{-,-\}$ and μ. In particular, (A, μ, α, β) is a BiHom-associative algebra and $(A, \{-,-\}, \alpha, \beta)$ is a BiHom-Lie algebra. If $\alpha = \beta$, then BiHom-Poisson algebra reduces to a Hom-Poisson algebras. If both of twisting maps are the identity maps, then a BiHom-Poisson algebra reduces to a Poisson algebra.

The paper is organized as follows. In section 2, we propose a definition for the BiHom-Poisson algebra and prove the tensor product of BiHom-Poisson algebra is a BiHom-Poisson algebra. In section 3, we give two ways to construct the BiHom-Poisson algebra.

Definition 1.1. [3] Let \mathbb{K} be a field. A BiHom-associative algebra over \mathbb{K} is a 4-tuple (A, μ, α, β), where A is a \mathbb{K}-linear space, $\alpha : A \to A$, $\beta : A \to A$ and $\mu : A \otimes A \to A$ are linear maps, with notation $\mu(a_1 \otimes a_2) = a_1 a_2$, satisfying the following conditions, for all $a_1, a_2, a_3 \in A$:

1. $\alpha \circ \beta = \beta \circ \alpha$,
2. $\alpha(a_1 a_2) = \alpha(a_1) \alpha(a_2)$ and $\beta(a_1 a_2) = \beta(a_1) \beta(a_2)$,
3. (BiHom-associativity) $\alpha(a_1)(a_2 a_3) = (a_1 a_2) \beta(a_3)$.

Definition 1.2. [3] A BiHom-Lie algebra over a field \mathbb{K} is a 4-tuple $(A, [-,-], \alpha, \beta)$, where A is a \mathbb{K}-linear space, $\alpha : A \to A$, $\beta : A \to A$ and $[-, -] : A \otimes A \to L$ are linear maps, with notation $[-, -](a_1 \otimes a_2) = [a_1, a_2]$, satisfying the following conditions, for all $a_1, a_2, a_3 \in L$:

1. $\alpha \circ \beta = \beta \circ \alpha$,
2. $\alpha[a_1, a_2] = [\alpha(a_1), \alpha(a_2)]$ and $\beta[a_1, a_2] = [\beta(a_1), \beta(a_2)]$,
3. (skew-symmetry) $[\beta(a_1), \alpha(a_2)] = -[\beta(a_2), \alpha(a_1)]$,
4. (BiHom-Jacobi condition) $[\beta^2(a_1), [\beta(a_2), \alpha(a_3)]] + [\beta^2(a_2), [\beta(a_3), \alpha(a_1)]] + [\beta^2(a_3), [\beta(a_1), \alpha(a_2)]] = 0$.

Definition 1.3. [8] Let A be a linear space and $\mu : A \otimes A \to A$, $\mu(a_1 \otimes a_2) = a_1 a_2$, for all $a_1, a_2 \in A$, is a linear multiplication on A. A Rota-Baxter operator of weight zero for (A, μ) is a linear map $R : A \to A$ satisfying the so-called Rota-Baxter condition

$$R(a_1)R(a_2) = R(R(a_1)a_2 + a_1R(a_2)), \forall a_1, a_2 \in A. \quad (1.1)$$

In this case, if we define a new multiplication by $a_1 * a_2 = a_1 R(a_2) + R(a_1)a_2$, for all $a_1, a_2 \in A$ on A, then $R(a_1 * a_2) = R(a_1)R(a_2)$, for all $a_1, a_2 \in A$ and R is a Rota-Baxter operator for (A, \ast). If (A, μ) is associative, then (A, \ast) is also associative.

The notion of a Baxter operator can be defined for algebras over any bi-nary operated, in the obvious manner. For instance, for the associative and commutative operated, Baxter operators are defined by condition (1.1), while for the Lie operated they are defined by

$$\{R(a_1), R(a_2)\} = R(\{R(a_1), a_2\} + \{a_1, R(a_2)\}).$$

Lemma 1.4. [5] We consider a 4-tuple $(L, [-, -], \alpha, \beta)$, where L is a linear space, $\alpha, \beta : L \to L$ are linear maps and $[-, -] : L \times L \to L$ is a bilinear map. Let $R : L \to L$ be a linear map such that

$$R \circ \alpha = \alpha \circ R \text{ and } R \circ \beta = \beta \circ R.$$

Define a new multiplication on L by

$$\{x, y\} = [R(x), y] + [x, R(y)], \forall x, y \in L.$$

Then:

1. If α and β satisfy

$$\alpha([x, y]) = [\alpha(x), \alpha(y)] \text{ and } \beta([x, y]) = [\beta(x), \beta(y)], \forall x, y \in L,$$

then they also satisfy

$$\alpha(\{x, y\}) = \{\alpha(x), \alpha(y)\} \text{ and } \beta(\{x, y\}) = \{\beta(x), \beta(y)\}, \forall x, y \in L;$$

2. If α and β satisfy

$$[\beta(x), \alpha(y)] = -[\beta(y), \alpha(x)], \forall x, y \in L,$$

then they also satisfy
\[\{\beta(x), \alpha(y)\} = -\{\beta(y), \alpha(x)\}, \forall x, y \in L;\]

3. If \(R\) satisfies
\[
[R(x), R(y)] = R([R(x), y] + [x, R(y)]), \forall x, y \in L,
\]
then
\[R(\{x, y\}) = [R(x), R(y)], \forall x, y \in L.\]

2 The Tensor Product Of BiHom-Poisson Algebras

Definition 2.1. A BiHom-Poisson algebra over a field \(\mathbb{K}\) is a 5-tuple \((A, \mu, \{-,-\}, \alpha, \beta)\), where \(A\) is a \(\mathbb{K}\)-linear space, \(\alpha : A \rightarrow A\), \(\beta : A \rightarrow A\), \(\mu : A \otimes A \rightarrow A\) and \(\{-,-\} : A \otimes A \rightarrow A\) are linear maps, with notation \(\mu(a_1 \otimes a_2) = a_1 a_2\), \(\{a_1 \otimes a_2\} = \{a_1, a_2\}\), satisfying the following conditions.

1. \((A, \mu, \alpha, \beta)\) is a BiHom-associative algebra,
2. \((A, \{-,-\}, \alpha, \beta)\) is a BiHom-Lie algebra,
3. (BiHom Leibniz Identity) \(\{\alpha \beta(a_1), a_2 a_3\} = \{\beta(a_1), a_2\} \beta(a_3) + \beta(a_2) \{\alpha(a_1), a_3\}\), for \(a_1, a_2, a_3 \in A\).

Lemma 2.2. If \((A, \mu, \{-,-\}, \alpha, \beta)\) is a BiHom-Poisson algebra. Then
\[
\{\beta(a_1), \beta(a_2) \alpha(a_3)\} = \beta^2(a_2)\{\beta(a_1), \alpha a_3\} + \beta^2(a_3)\{\beta(a_1), \alpha(a_2)\}, \tag{2.1}
\]
\[
\beta^2(a_3)\{\beta(a_1), \alpha(a_2)\} = \beta^2(a_2)\{\beta(a_3), \alpha(a_1)\} = \beta^2(a_1)\{\beta(a_2), \alpha(a_3)\}, \tag{2.2}
\]
\[
\alpha \beta(a_1)(a_2 a_3) = \beta(a_2)(\alpha(a_1)a_3) = (\beta(a_1)a_2)\beta(a_3). \tag{2.3}
\]

Lemma 2.3. Let \((A, \cdot, \{-,-\}_1, \alpha_1, \beta_1), (B, *, \{-,-\}_2, \alpha_2, \beta_2)\) are BiHom-Poisson algebras. \(\alpha, \beta : A \otimes B \rightarrow A \otimes B\) and \(\{-,-\} : (A \otimes B) \otimes (A \otimes B) \rightarrow A \otimes B\) are linear maps such that the following conditions hold (for all \(a_1, a_2 \in A, b_1, b_2 \in B\)):
\[
\alpha = \alpha_1 \otimes \alpha_2, \quad \beta = \beta_1 \otimes \beta_2,
\]
\[
\{a_1 \otimes b_1, a_2 \otimes b_2\} = \{a_1, a_2\}_A \otimes b_1 \ast b_2 + (a_1 \cdot a_2) \otimes \{b_1, b_2\}_B,
\]
then \((A \otimes B, *, \{-,-\}, \alpha, \beta)\) is a BiHom-Lie algebra.

Proof. It is obvious that
So we just need prove the following conditions:

\[
\{\beta(a_1 \otimes b_1), \alpha(a_2 \otimes b_2)\} = -\{\beta(a_2 \otimes b_2), \alpha(a_1 \otimes b_1)\},
\]

\[
\{\beta^2(a_1 \otimes b_1), \{\beta(a_2 \otimes b_2), \alpha(a_3 \otimes b_3)\}\} + \{\beta^2(a_2 \otimes b_2), \{\beta(a_3 \otimes b_3), \alpha(a_1 \otimes b_1)\}\} + \{\beta^2(a_3 \otimes b_3), \{\beta(a_1 \otimes b_1), \alpha(a_2 \otimes b_2)\}\} = 0.
\]

Now, we compute, for \(a_1, a_2 \in A, b_1, b_2 \in B\):

\[
\{\beta(a_1 \otimes b_1), \alpha(a_2 \otimes b_2)\}
\]

\[
= \{\beta_1(a_1) \otimes \beta_2(b_1), \alpha_1(a_2) \otimes \alpha_2(b_2)\}
\]

\[
= \{\beta_1(a_1), \alpha_1(a_2)\}_1 \otimes \beta_2(b_1) \ast \alpha_2(b_2) + \beta_1(a_1) \cdot \alpha_1(a_2) \otimes \{\beta_2(b_1), \alpha_2(b_2)\}_2
\]

\[
= -\{\beta_1(a_2), \alpha_1(a_1)\}_1 \otimes \beta_2(b_2) \ast \alpha_2(b_1) - \beta_1(a_2) \cdot \alpha_1(a_1) \otimes \{\beta_2(b_2), \alpha_2(b_1)\}_2
\]

\[
= -\{\beta(a_2 \otimes b_2), \alpha(a_1 \otimes b_1)\}
\]

\[
= -\{\beta(a_2 \otimes b_2), \alpha(a_1 \otimes b_1)\}.
\]

We denote by summation over the cyclic permutations of two category elements \(a_1, a_2, a_3\) and \(b_1, b_2, b_3\). For example,

\[
\bigcirc_{a_1, a_2, a_3}^{b_1, b_2, b_3} (a_1 + b_3)(a_2 + b_2)(a_3 + b_1)
\]

\[= (a_1 + b_3)(a_2 + b_2)(a_3 + b_1) + (a_2 + b_1)(a_3 + b_3)(a_1 + b_2) + (a_3 + b_2)(a_1 + b_1)(a_2 + b_3)
\]

We compute, for \(a_1, a_2, a_3 \in A, b_1, b_2, b_3 \in B\):

\[
\bigcirc_{a_1, a_2, a_3}^{b_1, b_2, b_3} \{\beta^2(a_1 \otimes b_1), \{\beta(a_2 \otimes b_2), \alpha(a_3 \otimes b_3)\}\}
\]

\[
= \bigcirc_{a_1, a_2, a_3}^{b_1, b_2, b_3} \{\beta^2_1(a_1), \{\beta_1(a_2), \alpha_1(a_3)\}_1 \otimes \beta_2^2(b_1) \ast \alpha_2(b_3)\}
\]

\[
= \bigcirc_{a_1, a_2, a_3}^{b_1, b_2, b_3} \{\beta^2_1(a_1), \{\beta_1(a_2), \alpha_1(a_3)\}_1 \otimes \beta_2^2(b_1) \ast \alpha_2(b_3)\}
\]

\[
\overset{(2.2)}{=} \bigcirc_{a_1, a_2, a_3}^{b_1, b_2, b_3} \{\beta^2_1(a_1), \{\beta_1(a_2), \alpha_1(a_3)\}_1 \otimes \beta_2^2(b_1) \ast \alpha_2(b_3)\}
\]

\[
\overset{(2.1)}{=} 0
\]
Theorem 2.4. Let \((A,*, \{-,-\}, \alpha, \beta), (B,*, \{-,-\}, \alpha, \beta)\) are BiHom-Poisson algebras. \(\alpha, \beta : A \otimes B \to A \otimes B\) and \(\{-,-\} : (A \otimes B) \otimes (A \otimes B) \to A \otimes B\) are linear maps such that the following conditions hold (for all \(a_1, a_2 \in A, b_1, b_2 \in B\)):

\[
\alpha = \alpha_1 \otimes \alpha_2, \quad \beta = \beta_1 \otimes \beta_2,
\]

\[
(a_1 \otimes b_1) * (a_2 \otimes b_2) = (a_1 : a_2) \otimes (b_1 * b_2),
\]

\[
\{a_1 \otimes b_1, a_2 \otimes b_2\} = \{a_1, a_2\}_A \otimes b_1 * b_2 + (a_1 \cdot a_2) \otimes \{b_1, b_2\}_B.
\]

Then \((A \otimes B, *, \{-,-\}, \alpha, \beta)\) is a BiHom-Poisson algebra.

Proof. It was proved in [8] that \((A \otimes B, *, \alpha, \beta)\) is a BiHom-association algebra, and by lemma 2.2 \((A \otimes B, \{-,-\}, \alpha, \beta)\) is a BiHom-Lie algebra. So we just need prove BiHom-Leibniz identity hold.

\[
\{\beta(a_1 \otimes b_1), a_2 \otimes b_2\} * \beta(a_3 \otimes b_3) + \beta(a_2 \otimes b_2) * \{\alpha(a_1 \otimes b_1), a_3 \otimes b_3\} = \{\alpha\beta(a_1 \otimes b_1), (a_2 \otimes b_2) * (a_3 \otimes b_3)\}
\]

We compute, for \(a_1, a_2, a_3 \in A, b_1, b_2, b_3 \in B\):

\[
\{\beta(a_1 \otimes b_1), a_2 \otimes b_2\} * \beta(a_3 \otimes b_3) + \beta(a_2 \otimes b_2) * \{\alpha(a_1 \otimes b_1), a_3 \otimes b_3\}
\]

\[
= \{(\beta(a_1), a_2)_1 \cdot \beta_1(a_3) \} \otimes ((\beta_2(b_1) * b_2) * \beta_2(b_3)) + \beta_1(a_2) \cdot \{(a_1(a_1), a_3) \otimes (\beta_2(b_2) * (a_2(b_1) * b_3))
\]

\[
+ \beta_1(a_2) \cdot (a_1(a_1) \cdot a_3) \otimes (\beta_2(b_2) * \{a_2(b_1), b_3\}_2)
\]

\[
+ (\beta_1(a_1) \cdot a_2) \cdot \beta_1(a_3) \otimes (\{\beta_2(b_1), b_2\}_2 * \beta_2(b_3))
\]

\[
(2.3) = \{\beta_1(a_1), a_2\}_1 \cdot \beta_1(a_3) \otimes (\alpha_2 \beta_2(b_1) * (b_2 * b_3)))
\]

\[
+ \beta_1(a_2) \cdot \{(a_1(a_1), a_3) \otimes (a_2 \beta_2(b_1) * (b_2 * b_3))
\]

\[
+ \alpha_1 \beta_1(a_1) \cdot (a_2 \cdot a_3) \otimes (\beta_2(b_2) * \{a_2(b_1), b_3\}_2)
\]

\[
+ \alpha_1 \beta_1(a_1) \cdot (a_2 \cdot a_3) \otimes (\{\beta_2(b_1), b_2\}_2 * \beta_2(b_3))
\]

\[
= \{\alpha_1 \beta_1(a_1), a_2 \cdot a_3\}_1 \otimes (\alpha_2 \beta_2(b_1) * (b_2 * b_3))
\]

\[
+ \alpha_1 \beta_1(a_1) \cdot (a_2 \cdot a_3) \otimes \{a_2 \beta_2(b_1), b_2 b_3\}_2
\]

\[
= \{\alpha_1 \beta_1(a_1) \otimes \alpha_2 \beta_2(b_1), a_2 \cdot a_3 \otimes b_2 * b_3\}
\]

\[
= \{\alpha \beta(a_1 \otimes b_1), (a_2 \otimes b_2) * (a_3 \otimes b_3)\}.
\]

\[\square\]

3 Constructions Of BiHom-Poisson Algebra

Theorem 3.1. Let \((A, \mu, \{-,-\}, \alpha, \beta)\) be a BiHom-Poisson algebra.
1. \((A, \{-, -\}^n = \alpha^n \{-, -\}, \mu^n = \alpha^n \mu, \alpha^{n+1}, \alpha^n \beta)\) is a BiHom-Poisson algebra.

2. Define two new linear maps \(*\) and \((-,-)\) with

\[
x * y = R(x)y + xR(y), \quad \langle x, y \rangle = \{R(x), y\} + \{x, R(y)\}.
\]

Then \((A, *, (-,-), \alpha, \beta)\) is a BiHom-Poisson algebra.

Proof. We just prove (2) and leave (1) to the reader. It is easy to prove that \((A, *, \alpha, \beta)\) is a BiHom-associative algebra. And by Lemma 1.4, we get

\[
\alpha \langle a_1, a_2 \rangle = \langle \alpha (a_1), \alpha (a_2) \rangle,
\]

\[
\beta \langle a_1, a_2 \rangle = \langle \beta (a_1), \beta (a_2) \rangle,
\]

\[
\langle \beta (x), \alpha (y) \rangle = -\langle \beta (y), \alpha (x) \rangle.
\]

So we just need prove following conditions hold:

\[
\langle R\beta^2(a_1), \langle \beta (a_2), \alpha (a_3) \rangle \rangle + \langle R\beta^2(a_2), \langle \beta (a_3), \alpha (a_1) \rangle \rangle + \langle R\beta^2(a_3), \langle \beta (a_1), \alpha (y) \rangle \rangle = 0;
\]

\[
\langle \alpha \beta(a_1), a_2 * a_3 \rangle = \langle \beta (a_1), a_2 \rangle * \beta (a_3) + \beta (a_2) * \langle \alpha (a_1), a_3 \rangle.
\]

We compute, for \(a_1, a_2, a_3 \in A:\)

\[
\langle R\beta^2(a_1), \langle \beta (a_2), \alpha (a_3) \rangle \rangle
\]

\[
= \{R\beta^2(a_1), \{R\beta(a_2), \alpha (a_3)\}\} + \{\beta (a_2), R\alpha (a_3)\}
\]

\[
+ \{\beta^2(a_1), R\{R\beta(a_2), \alpha (a_3)\}\} + R\{\beta (a_2), R\alpha (a_3)\}
\]

\[
= \{R\beta^2(a_1), \{R\beta(a_2), \alpha (a_3)\}\} + \{R\beta^2(a_1), \{\beta (a_2), R\alpha (a_3)\}\}
\]

\[
+ \{\beta^2(a_1), \{R\beta(a_2), R\alpha (a_3)\}\}.
\]

Similarly,

\[
\langle R\beta^2(a_2), \langle \beta (a_3), \alpha (a_1) \rangle \rangle
\]

\[
= \{R\beta^2(a_2), \{R\beta(a_3), \alpha (a_1)\}\} + \{R\beta^2(a_2), \{\beta (a_3), R\alpha (a_1)\}\} + \{\beta^2(a_2), \{R\beta(a_3), R\alpha (a_1)\}\},
\]

\[
\langle R\beta^2(a_3), \langle \beta (a_1), \alpha (y) \rangle \rangle
\]

\[
= \{R\beta^2(a_3), \{R\beta(a_1), \alpha (a_2)\}\} + \{R\beta^2(a_3), \{\beta (a_1), R\alpha (a_2)\}\} + \{\beta^2(a_3), \{R\beta(a_1), R\alpha (a_2)\}\}.
\]
Thus, we get
\[\langle [R\beta^2(a_1), \{\beta(a_2), \alpha(a_3)\}] \rangle \]
\[= \langle [R\beta^2(a_1), \{R\beta(a_2), \alpha(a_3)\}] \rangle + \langle [R\beta^2(a_1), \{\beta(a_2), R\alpha(a_3)\}] \rangle + \langle [\beta^2(a_1), [R\beta(a_2), R\alpha(a_3)]] \rangle \]
\[= \langle [R\beta^2(a_1), \{R\beta(a_2), \alpha(a_3)\}] \rangle + \langle [R\beta^2(a_1), \{\beta(a_2), R\alpha(a_3)\}] \rangle - \langle \beta^2(a_2), \{R\beta(a_3), R\alpha(a_1)\} \rangle - \langle \beta^2(a_2), \{\beta(a_1), \alpha R(a_2)\} \rangle \]
\[= 0. \]

Next, we compute
\[\langle \alpha \beta(a_1), a_2 * a_3 \rangle \]
\[= \langle \alpha \beta(a_1), R(a_2)a_3 + a_2 R(a_3) \rangle \]
\[= \{R(\alpha \beta(a_1)), R(a_2)a_3 + a_2 R(a_3)\} + \{\alpha \beta(a_1), R(R(a_2)a_3 + a_2 R(a_3))\} \]
\[= \{R(\alpha \beta(a_1)), R(a_2)a_3 + a_2 R(a_3)\} + \{\alpha \beta(a_1), R(a_2)R(a_3)\} \]
\[= \{R\beta(a_1), R(a_2)\} \beta(a_3) + R\beta(a_2)\{R\alpha(a_1), a_3\} + \{R\beta(a_1), a_2\} R\beta(a_3) \]
\[+ \beta(a_2)\{R\alpha(a_1), R(a_3)\} + \{\beta(a_1), R(a_2)\} \beta(a_3) + R\beta(a_2)\{\alpha(a_1), R(a_3)\} \]
\[= \langle \beta(a_1), a_2 * \beta(a_3) + \beta(a_2) * \langle \alpha(a_1), a_3 \rangle \rangle \]
\[= \langle \{R\beta(a_1), a_2\} + \{\beta(a_1), R(a_2)\} \rangle \beta(a_3) + \beta(a_2) \{\{R\alpha(a_1), a_3\} + \{\alpha(a_1), R(a_3)\}\} + \langle \{R\beta(a_1), a_2\} + \{\beta(a_1), R(a_2)\} \rangle \beta(a_3) \]
\[+ R\beta(a_2)\{\{R\alpha(a_1), a_3\} + \{\alpha(a_1), R(a_3)\}\} + \beta(a_2) \{\{R\alpha(a_1), a_3\} + \{\alpha(a_1), R(a_3)\}\} \]
\[= \langle R\beta(a_1), R(a_2) \rangle \beta(a_3) + \{\{R\beta(a_1), a_2\} + \{\beta(a_1), R(a_2)\} \rangle \beta(a_3) \]
\[+ R\beta(a_2)\{\{R\alpha(a_1), a_3\} + \{\alpha(a_1), R(a_3)\}\} + \beta(a_2) \{\{R\alpha(a_1), a_3\} + \{\alpha(a_1), R(a_3)\}\} \]

Thus, (3.2) can be obtained. \(\square \)

References

https://doi.org/10.1142/s0217732394002951

https://doi.org/10.3842/sigma.2015.086

Received: January 15, 2019; Published: March 12, 2019