Relationship the P-Ideal with
Other Concepts of BH-Algebra

Ayat Abdulaali Neamah
Department of Mathematics, University of Kerbala
Faculty of Education for pure sciences, Iraq

Suad Abdulaali Neamah
Department of Mathematics, University of Kufa
Faculty of Education for Girls, Iraq

Copyright © 2018 Ayat Abdulaali Neamah and Suad Abdulaali Neamah. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the notions of p-ideal of a BH-algebra and we state and prove some theorems which determine the relationships among this ideal with the intersection, union, image of function, inverse function for p-ideals of BH-algebra and also we give some properties of this ideal and link it with other types of concepts of a BH-algebra.

Keywords: BH-algebra, p-ideal, positive implicative

1. Preliminaries

In this section, is devoted to some basic ordinary concepts of BH-algebra, p-ideal and homomorphism in BH-algebra, we give some basic concepts about image of function, the inverse image, positive implicative and translation ideal of a BH-algebra with some propositions and theorems.

Definition (1.1): [7] A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

i. \(x * x = 0, \forall x \in X \).
ii. \(x \ast y = 0\) and \(y \ast x = 0\) imply \(x = y\), \(\forall\ x, y \in X\).

iii. \(x \ast 0 = x\), \(\forall\ x \in X\).

Definition (1.2): A nonempty subset \(I\) of a BH-algebra \(X\) is called a \textbf{P-ideal} of \(X\) if:

i. \(0 \in I\),

ii. \((x \ast z) \ast (y \ast z) \in I\) and \(y \in I\) imply \(y \in I\), \(\forall\ x, y, z \in X\).

Remark (1.3): Let \(X\) and \(Y\) be BH-algebras. A mapping \(f: X \rightarrow Y\) is called a \textbf{homomorphism} if \(f(x \ast y) = f(x) \ast f(y)\), \(\forall\ x, y \in X\). A homomorphism \(f\) is called a \textbf{monomorphism} (resp., \textbf{epimorphism}) if it is injective (resp., surjective). A bijective homomorphism is called an \textbf{isomorphism}. Two BH-algebras \(X\) and \(Y\) are said to be \textbf{isomorphic}, written \(X \cong Y\), if there exists an isomorphism \(f: X \rightarrow Y\). For any homomorphism \(f: X \rightarrow Y\), the set \(\{x \in X: f(x) = 0\}\) is called the \textbf{kernel} of \(f\), denoted by \(\ker(f)\), and the set \(\{f(x): x \in X\}\) is called the \textbf{image} of \(f\), denoted by \(\text{Im}(f)\). Notice that \(f(0) = 0\), \(\forall\) homomorphism \(f\).

Remark (1.4): Let \((X, \ast, 0)\) be a BH-algebra and let \(N\) be a normal subalgebra of \(X\). Define a relation \(\sim_N\) on \(X\) by \(a \sim_N b\) if and only if \(a \ast b \in N\) and \(b \ast a \in N\), \(\forall\ a, b \in X\). Then \(\sim_N\) is an equivalence relation on \(X\). Denote this by \([a]_N\), i.e., \([a]_N = \{b \in X | a \sim_N b\}\) and \(X/N = \{[a]_N | a \in X\}\). And define \([a]_N \oplus [b]_N = [a \ast b]_N\), then ((\(X/N\), \(\oplus\), \(\{0\}_N\))) is a BH-algebra.

Theorem (1.5): Let \(N\) be a normal subalgebra of BH-algebra \(X\). If \(I\) is an ideal of \(X\), then \(I/N\) is an ideal of \(X/N\).

Remark (1.6): Let \(A\) be a translation ideal of a BH-algebra \((X, \ast, 0)\). If we define \([a]_A \oplus [b]_A = [a \ast b]_A\) for all \(a, b \in X\), then \((X/A, \oplus, [0]_A)\) is a BH-algebra.

Theorem (1.7): Let \(A\) be a translation ideal of a BH-algebra \((X, \ast, 0)\). If we define \([a]_A \oplus [b]_A = [a \ast b]_A\) for all \(a, b \in X\), then \((X/A, \oplus, [0]_A)\) is a BH-algebra.

Definition (1.8): Let \(X\) be a BH-algebra. For a fixed \(b \in X\), we define a map \(R_b: X \rightarrow X\) such that \(R_b(x) = x \ast b\), \(\forall\ x \in X\) and call \(R_b\) a \textbf{right map} on \(X\). Symbolize the set of all right maps on \(X\) by \(R(X)\). A left map \(L_b\) is defined by a similar way, we define a map \(L_b: X \rightarrow X\) such that \(L_b(x) = b \ast x\), \(\forall\ x \in X\) and call \(L_b\) a \textbf{left map} on \(X\).
Definition (1.9): [1, 5] A BH-algebra \((X, *, 0)\) is said to be a **positive implicative** if it satisfies \(\forall a, b \text{ and } c \in X, (a*c) \ast (b*c) = (a*b) \ast c\).

Theorem (1.10): [5] If \(X\) is a positive implicative BH-algebra, then \((L(X), \oplus, L_0)\) is a positive implicative BH-algebra.

Remark (1.11): Let \(X\) be a BH-algebra and let \(I\) be a subset of \(X\). We will define to the set \(\{ L_a \in L(X) : a \in I \}\) by \(L(I)\).

Remark (1.12): [5] Suppose that \(X\) be a positive implicative BH-algebra, defined \(\oplus\) an operation in \(L(X)\) is \((L_a \oplus L_b)(x) = L_a(x) \ast L_b(x)\) and \((L_a \oplus L_b)(x) = L_{a \lor b}(x)\), \(\forall L_a, L_b \in L(X)\) and \(\forall x \in X\).

Definition (1.13): [2] A BH-algebra \(X\) is called an **associative BH-algebra** if:
\[(x \ast y) \ast z = x \ast (y \ast z), \quad \forall x, y, z \in X.\]

Theorem (1.14): [2] Let \(X\) be an associative BH-algebra. Then the following properties are hold:

i. \(0 \ast a = a\); \(\forall a \in X\)
ii. \(a \ast b = b \ast a\); \(\forall a, b \in X\)
iii. \(a \ast (a \ast b) = b\); \(\forall a, b \in X\)
iv. \((c \ast a) \ast (a \ast b) = a \ast b\); \(\forall a, b, c \in X\)
v. \(a \ast b = 0 \Rightarrow a = b\); \(\forall a, b \in X\)
vi. \((a \ast (a \ast b)) \ast b = 0\); \(\forall a, b \in X\)
vii. \((a \ast (a \ast b)) \ast c = (a \ast c) \ast b\); \(\forall a, b, c \in X\)
viii. \((a \ast c) \ast (b \ast d) = (a \ast (b \ast d)) \ast (c \ast d)\); \(\forall a, b, c, d \in X\)

Proposition (1.15): [1] Every P-ideal of a BH-algebra \(X\) is an ideal of \(X\).

2. The Relationship the P-Ideal with Other Notions

Theorem (2.1): Let \(\{I_i, i \in \Gamma\}\) be a family of p-ideals of a BH-algebra \(X\). Then \(\bigcap_{i \in \Gamma} I_i\) is a p-ideal of \(X\).

Proof: To prove \(\bigcap_{i \in \Gamma} I_i\) is a p-ideal of \(X\).

i. \(0 \in I_i, \forall i \in \Gamma\). [Since each \(I_i\) are p-ideals of \(X, \forall i \in \Gamma\). By definition (1.2)(i))]

\(\Rightarrow 0 \in \bigcap_{i \in \Gamma} I_i\).
ii. Let \(x, y, z \in X \) such that \((x*z)\star(y*z) \in \bigcap_{i \in \Gamma} I_i \) and \(y \in \bigcap_{i \in \Gamma} I_i \)
\[\Rightarrow (x*z)\star(y*z) \in I_i \text{ and } y \in I_i, \forall i \in \Gamma. \]
\[\Rightarrow x \in I_i, \forall i \in \Gamma. \text{ [Since each } I_i \text{ are p-ideal of } X, \forall i \in \Gamma. \text{ By definition (1.2)(ii)]} \]
\[\Rightarrow x \in \bigcap_{i \in \Gamma} I_i. \text{ Therefore, } \bigcap_{i \in \Gamma} I_i \text{ is a p-ideal of } X. \]

Theorem (2.2): Let \(\{ I_i, i \in \Gamma \} \) be a chain p-ideals of a BH-algebra \(X \). Then \(\bigcup_{i \in \Gamma} I_i \) is a p-ideal of \(X \).

Proof: To prove \(\bigcup_{i \in \Gamma} I_i \) is a p-ideal of \(X \).

i. \(0 \in I_i, \forall i \in \Gamma. \) [Since each \(I_i \) is a p-ideal of \(X \), \(\forall i \in \Gamma \). By definition (1.2)(i)]
\[\Rightarrow 0 \in \bigcup_{i \in \Gamma} I_i. \]

ii. Let \(x, y, z \in X \) such that \((x*z)\star(y*z) \in \bigcup_{i \in \Gamma} I_i \) and \(y \in \bigcup_{i \in \Gamma} I_i \).
\[\exists I_j, I_k \in \{ I_i \}_{i \in \Gamma}, \text{ such that } (x*z)\star(y*z) \in I_j \text{ and } y \in I_k \]
\[\Rightarrow \text{ either } I_j \subseteq I_k \text{ or } I_k \subseteq I_j \quad \text{ [Since } \{ I_i \}_{i \in \Gamma} \text{ is a chain]} \]
\[\Rightarrow \text{ either } (x*z)\star(y*z) \in I_j \text{ and } y \in I_j \text{ or } (x*z)\star(y*z) \in I_k \text{ and } y \in I_k \]
\[\Rightarrow \text{ either } x \in I_j \text{ or } x \in I_k. \text{ [Since } I_j \text{ and } I_k \text{ are p-ideals of } X. \text{ By definition (1.2)(ii)]} \]
\[\Rightarrow x \in \bigcup_{i \in \Gamma} I_i. \text{ Therefore, } \bigcup_{i \in \Gamma} I_i \text{ is a p-ideal of } X. \]

Proposition (2.3): Let \(f: (X,*,0) \to (Y,*',0') \) be a BH-epimorphism. If \(I \) is a p-ideal of \(X \), then \(f(I) \) is a p-ideal of \(Y \).

Proof: Let \(I \) be a p-ideal of \(X \). Then

i. \(f(0) = 0'. \quad \text{[Since } f \text{ is an epimorphism. By remark (1.3)]} \]
\[\Rightarrow 0' \in f(I) \]

ii. Let \(x, y, z \in Y \) such that \((x*z)\star(y*z) \in f(I) \) and \(y \in f(I) \)
\[\Rightarrow \exists a, b, c \in I \text{ such that } f(a) = x, f(b) = y \text{ and } f(c) = z \]
\[\Rightarrow (x*z)\star(y*z) = (f(a)\star f(c))\star(f(b)\star f(c)) = f((a*c)\star(b*c)) \in f(I), \quad \text{[Since } f \text{ is an epimorphism. By remark (1.3)]} \]

\[\Rightarrow (a^*c)^*(b^*c) \in I \quad \text{and} \quad b \in I, \quad \text{[Since } f(I) = \{f(x) : x \in I\}\]

\[\Rightarrow a \in I, \quad \text{[Since } I \text{ is a } \text{p-ideal of } X. \text{ By definition (1.2)(ii)\]

\[\Rightarrow f(a) \in f(I). \quad \text{[Since } f(I) = \{f(x) : x \in I\}\]

Then \(f(I) \) is a \(\text{p-ideal of } Y. \) ■

Proposition (2.4): Let \(f: (X, *, 0) \to (Y,*', 0') \) be a BH-homomorphism. If \(I \) is a \(\text{p-ideal of } Y, \) then \(f^{-1}(I) \) is a \(\text{p-ideal of } X. \)

Proof: Let \(I \) be a \(\text{p-ideal of } Y. \) Then

i. \(f(0) = 0' \) \quad \text{[Since } f \text{ is a homomorphism. By remark (1.3)\]

\[\Rightarrow 0 \in f^{-1}(I). \]

ii. Let \(x, y, z \in X \) such that \((x*z)*(y*z) \in f^{-1}(I) \) and \(y \in f^{-1}(I) \)

\[\Rightarrow f((x*z)*(y*z)) \in I \quad \text{and} \quad f(y) \in I \]

\[\Rightarrow f((x*z)*(y*z)) = f(x)^*f(z)^* = f(y)^*f(z) \in I \quad \text{and} \quad f(y) \in I, \quad \text{[Since } f \text{ is a homomorphism.]\]

\[\Rightarrow f(x) \in I, \quad \text{[Since } I \text{ is a } \text{p-ideal of } Y. \text{ By definition (1.2)(ii)\]

\[\Rightarrow x \in f^{-1}(I). \quad \text{[Since } f \text{ is a homomorphism, by Remark (1.3)\]

Therefore, \(f^{-1}(I) \) is a \(\text{p-ideal of } X. \) ■

Theorem (2.5): Let \(N \) be a normal subalgebra of BH-algebra \(X. \) If \(I \) is a \(\text{p-ideal of } X, \) then \(I/N \) is a \(\text{p-ideal of } X/N. \)

Proof: Suppose that \(I \) is a \(\text{p-ideal of } X. \)

\[\Rightarrow I \text{ is an ideal of } X. \quad \text{[By proposition (1.15)\]

\[\Rightarrow I/N \text{ is an ideal of } X/N. \quad \text{[By theorem (1.5)\]

i. \([0]_N \in I/N. \quad \text{[Since } 0 \in I. \text{ By definition (1.2)(i)\]

ii. Let \([x]_N, [y]_N, [z]_N \in X/N \) such that

\[([x]_N^*[z]_N)^*([y]_N^*[z]_N) \in I/N \quad \text{and} \quad [y]_N \in I/N, \]

\[\Rightarrow [x*z]_N)^*([y*z]_N \in I/N \quad \text{and} \quad [y]_N \in I/N. \quad \text{[Since } [x]_N^*[y]_N=[x*y]_N \]

\[\Rightarrow [(x*z)^*]_N \in I/N \quad \text{and} \quad [y]_N \in I/N, \]

\[\Rightarrow (x*z)^* y \in I \quad \text{and} \quad y \in I. \quad \text{[Since } I/N = \{[x]_N | x \in I\}. \text{By remark (1.4)\]}

⇒ \(x \in I \), [Since I is a p-ideal. By definition (1.2)(ii)]
⇒ \([x]_N \in I/N\). Therefore, I/N is a p-ideal of X/N. ■

Proposition (2.6): Let A be a translation ideal of a BH-algebra X. If I is a p-ideal of X, then I/A is a p-ideal of X/A.

Proof: Assume that I be a p-ideal of X.

i. \([0] \in I/A\). [By definition (1.2)(i)]

ii. Let \([x]_A, [y]_A, [z]_A \in X/A\) such that
\([x+z]_A \oplus [y+z]_A \in I/A\) and \([y]_A \in I/A\)
⇒ \([x*z]_A \oplus [y*z]_A \in I/A\) and \([y]_A \in I/A\).

[Since \([x]_A \oplus [y]_A = [x*y]_A\). By remark (1.6)]
⇒ \([x*z]_A \oplus (y*z)_A \in I/A\) and \([y]_A \in I/A\),
⇒ \([x*z]_A \oplus (y*z)_A \in I\) and \([y]_A \in I\), [Since I is a p-ideal. By definition (1.2)(ii)]
⇒ \([x]_A \in I/A\). Then, I/A is a p-ideal of X/N. ■

Proposition (2.7): Let X be a positive implicative BH-algebra. If I is a p-ideal of X, then L(I) is a p-ideal of \((L(X), \oplus, L_0)\).

Proof: Let I be a p-ideal of X.

i. \(0 \in I\) [By definition (1.2)(i)]
⇒ \(L_0 \in L(I)\)

ii. Let \(L_a, L_b, L_c \in L(I)\) such that \((L_a \oplus L_c) \oplus (L_b \oplus L_c) \in L(I)\) and \(L_a \in L(I)\).
⇒ \((a * c) \ast (b \ast c)) \ast c \in I\) and \(b \in I\), [Since \((L_a \oplus L_c) \oplus (L_b \oplus L_c) = L_{(a\ast c)+(b\ast c)} \in L(I)\)]
⇒ \(a \in I\), [By definition (1.2)(ii)]
⇒ \(L_a \in L(I)\). Therefore, L(I) is a p-ideal of \((L(X), \oplus, L_0)\). ■

Theorem (2.8): Let X be a positive implicative BH-algebra and let
\(H_t = \{a \in X | a \ast t = 0, t \in X\}\)
be a subset of X. If \((a \ast t) \ast (b \ast t) = a \ast t\) with \(a \ast t \neq b \ast t\), \(\forall a, b, t \in X\), then \(H_t \cup \{0\}\) is a p-ideal of X.

Proof: We must show that \(H_t \cup \{0\}\) is a p-ideal of X.
Relationship the P-ideal with other concepts of BH-algebra

i. we have $0 \in H_t \cup \{0\}$.

ii. Let $a, b, c \in X$ such that $(a*c)*(b*c) \in H_t$ and $b \in H_t$.

$\Rightarrow (a*c)*(b*c) \in H_t$ [Since $H_t \cup \{0\}$ is an ideal]

$\Rightarrow (a*c)*(b*c)*t = 0$

$\Rightarrow ((a*t)*(c*t))*((b*t)*(c*t))=0$ [$(a*b)*t=(a*t)*(b*t)$, since X be positive implicative]

$\Rightarrow ((a*t)*(c*t))*((b*t)*(c*t))=0$

$\Rightarrow a*t = 0$, then $a \in H_t$. Therefore, $H_t \cup \{0\}$ is a p-ideal of X.

Theorem (2.9): If $g : (X, *, 0) \rightarrow (Y, *', 0')$ be a homomorphism from an associative BH-algebra X into BH-algebra Y, then ker(g) is a p-ideal of X.

Proof: We must show that ker(g) is a p-ideal of X.

i. $g(0)=0'$. [Since g be a homomorphism]. Then $0 \in$ ker(g).

ii. Let $(x*z)*(y*z) \in$ ker(g) and $y \in$ ker(g)

$\Rightarrow g((x*z)*(y*z))=0'$ and $g(y)=0'$ [By remark (1.3)]

$\Rightarrow (g(x)*g(z))*g(y)'*g(z)) = 0'$. [Since g is a homomorphism.]

$\Rightarrow (g(x)*g(z))*'(0'*g(z)) = 0'$ [Since $g(y)=0'$]

$\Rightarrow g((x*z)*(0*z))=0'$ [Since X is an associative.

$(a*c)*(b*d)=(a*b)*(c*d)$]

$\Rightarrow g((x*0)*(z*z))=0'$ [Since X is BH-algebra ; $x*0=x$ and $x*x=0$]

$\Rightarrow g(x*0)=0'$ [Since X is BH-algebra ; $x*0=x$]

$\Rightarrow g(x)=0'$ [Since X is BH-algebra ; $x*0=x$ and $x*x=0$]

$\Rightarrow x \in$ ker(g). Therefore, ker(g) is a p-ideal of X.

References

Received: April 14, 2018; Published: May 14, 2018