Some Generalizations for *-Armendariz *-Rings

Usama A. Aburawash and Bsmaa M. ELgamudi

Department of Mathematics and Computer Science
Faculty of Science, Alexandria University, Alexandria, Egypt

Copyright © 2018 Usama A. Aburawash and Bsmaa M. ELgamudi. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introduce some classes of *-rings which generalize that of *-Armendariz *-rings and investigate their properties. We introduce the concepts of central *-Armendariz, weak *-Armendariz, *-weak *-Armendariz and quasi *-Armendariz. Moreover, sufficient conditions are given for central and quasi *-rings to be *-Armendariz. We give also sufficient conditions for central *-Armendariz, weak *-Armendariz, *-weak *-Armendariz and quasi *-Armendariz *-rings to be central Armendariz, weak Armendariz and quasi Armendariz, respectively. Furthermore, We show that the classes of weak Armendariz and weak *-Armendariz *-rings lie strictly between the classes of Armendariz and *-weak *-Armendariz *-rings. Also, we discuss the relation between weak *-Armendariz and *-IFP *-rings. Finally, we show that the properties of central, weak and quasi are extended to its polynomial *-ring \(R[x] \), Laurent polynomial *-ring \(R[x, x^{-1}] \), localization \(S^{-1}R \) of \(R \) to \(S \), from Ore *-ring to its classical Quotient \(Q \), upper triangular matrices with equal diagonal elements \(T_{nE}(R) \) over a commutative *-ring and the *-corner *-ring \(eRe \).

Keywords: *-Armendariz, reduced, central *-Armendariz, weak *-Armendariz, *-weak *-Armendariz, quasi *-Armendariz, *-Baer, IFP, *-IFP, quasi-*-IFP, *-domain, *-Abelian

Faculty of Science, Benghazi University, Benghazi, Libya
1 Introduction

By a ring we always mean an associative ring with identity. A ring R is said to be \ast-ring if on R there is defined an involution \ast. \ast-rings are objects of the category of rings with involution with morphisms also preserving involution. Therefore the consistent way of investigating \ast-rings is to study them within this category, as done in a series of papers (for instance [5], [3] and [6]). The purpose of this note is to study some classes of \ast-rings which generalize that of \ast-Armendariz \ast-rings within its category.

Throughout this paper, the natural numbers, the integer numbers and the integers modulo n will be denoted by \mathbb{N}, \mathbb{Z} and \mathbb{Z}_n, respectively, $\mathcal{C}(R)$ denotes the center of a \ast-ring R, $\text{nil}(R)$ (\ast-$\text{nil}(R)$) will denote the set of all nilpotent (\ast-nilpotent) elements of R and $\mathbb{M}_n(R)$ will denote the full matrix ring of all $n \times n$ matrices over the ring R, while $T_n(R)$ ($T_{nE}(R)$) will denote the $n \times n$ upper triangular matrix ring (with equal diagonal elements) over R. Furthermore, for a commutative ring R, the involution \diamond defined on $T_{nE}(R)$ for $n > 2$ is given by replacing each entry by its involutive image and fixing the two diagonals considering the diagonal right upper / left lower as symmetric ones and interchanging the symmetric elements about it. For $n = 2$ (trivial extension $T(R,R)$, the involution \diamond is the adjoint involution.

The right annihilator of a nonempty set A of R is denoted by $r_R(A)$ and the \ast-right annihilator of A is denoted by $r_*(A) = \{ x \in R \mid Ax = Ax^* = 0 \}$. If there is no ambiguity, we write $r(A)$ and $r_*(A)$ for $r_R(A)$ and $r_*(A)$, respectively. Left and \ast-left annihilators ($l_R(A)$ and $l_*(A)$, respectively) are defined similarly. A self adjoint idempotent element e (i.e., $e^* = e = e^2$) is called projection. A \ast-ring R is said to be Abelian (\ast-Abelian) if every idempotent (projection) of R is central. Recall from [5], an element a of R is said to be \ast-nilpotent if $(aa^*)^n = 0 = a^m$, for some positive integers n and m. Obviously, a \ast-nilpotent element is nilpotent, but the converse is not true [5, Example 2.3]. A \ast-ring R is called reduced (\ast-reduced) if it has no nonzero nilpotent (\ast-nilpotent) elements. An involution \ast is called proper (resp., semiproper) if $aa^* = 0$ (resp., $aRa^* = 0$) implies $a = 0$, for every element $a \in R$. A proper involution is clearly semiproper. A \ast-ring R is said to have IFP (\ast-IFP) if for all $a, b \in R, ab = 0$ implies $aRb = 0$ ($aRb^* = 0$) ([13], [4]). R is reversible if $ab = 0$ implies $ba = 0$ ([8]). Recall from [3], a \ast-ring R is said to have quasi-\ast-IFP if for all $a, b \in R, ab = ab^* = 0$ implies $aRb = 0$. Following [11], a \ast-ring R is said to be Baer if the right annihilator of every nonempty subset of R is generated, as a right ideal, by a projection. In [5], a generalization of Baer \ast-ring is given which is consistent with the category of involution rings; that is \ast-Baer \ast-ring. A \ast-ring R is said to be \ast-Baer if the \ast-right (\ast-left) annihilator of every nonempty subset A of R is a principal \ast-biideal generated by a projection; that is $r_*(A) = eRe$.

Usama A. Aburawash and Bsmaa M. ELgamudi
From [15], recall a ring R is Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_{i}x^{i},\ g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_{i}b_{j} = 0$ for each i, j. However, reduced rings are Armendariz ([7, Lemma1]). By [2], a $*$-ring R is called $*$-Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_{i}x^{i},\ g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)g(x) = f(x)g'(x) = 0$, then $a_{i}b_{j} = 0$ for all i, j (consequently $a_{i}b^{*}_{j} = 0$). According to [17], a ring R is called weak Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_{i}x^{i},\ g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_{i}b_{j} \in \text{nil}(R)$ for each i, j. Clearly, Armendariz rings are weak Armendariz while the converse is not true. A ring R is called central Armendariz if for any $f(x) = \sum_{i=0}^{m} a_{i}x^{i},\ g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x],\ f(x)g(x) = 0$ implies that $a_{i}b_{j} \in C(R)$ ([9]). Clearly, Armendariz rings are central Armendariz. From [16], a ring R is called quasi-Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_{i}x^{i},\ g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)R[x]g(x) = 0$, then $a_{i}Rb_{j} = 0$ for each i, j. Clearly, Armendariz rings are quasi-Armendariz. Moreover, several examples and counterexamples are included which answers questions that occur naturally in the process of this paper.

2 Central $*$-Armendariz $*$-rings

In this section, central $*$-Armendariz $*$-rings are introduced as a generalization of $*$-Armendariz $*$-rings. If R is a $*$-ring, then the involution $*$ can naturally be extended to $R[x]$ as:

$$(f(x))^* = (\sum_{i=0}^{m} a_{i}x^{i})^* = \sum_{i=0}^{m} a_{i}^{*} x^{i} \text{ for all } f(x) \in R[x].$$

Definition. A $*$-ring R is called central $*$-Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_{i}x^{i}$ and $g(x) = \sum_{j=0}^{n} b_{j}x^{j} \in R[x]$ satisfy $f(x)g(x) = f(x)g^{*}(x) = 0$, then $a_{i}b_{j} \in C(R)$ for all i, j (consequently $a_{i}b^{*}_{j} \in C(R)$).

Clearly, each $*$-Armendariz $*$-ring is central $*$-Armendariz, but the converse is not true as shown by the following example:

Example 1. If n is non-square-free number (that is divides at least perfect square), then the \circ-ring $\mathbb{T}(\mathbb{Z}_{n}, \mathbb{Z}_{n})$, is commutative and so central \circ-Armendariz. Moreover, $\mathbb{T}(\mathbb{Z}_{8}, \mathbb{Z}_{8})$ is not \circ-Armendariz, since the polynomial $f(x) = \left(\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array}\right) + \left(\begin{array}{cc} 4 & 1 \\ 0 & 4 \end{array}\right) x \in \mathbb{T}(\mathbb{Z}_{8}, \mathbb{Z}_{8})$, satisfies $(f(x))^{2} = f(x)f^{*}(x) = 0$, while

$$\left(\begin{array}{cc} 4 & 0 \\ 0 & 4 \end{array}\right) \left(\begin{array}{cc} 4 & -1 \\ 0 & 4 \end{array}\right) = \left(\begin{array}{cc} 0 & -4 \\ 0 & 0 \end{array}\right) \neq 0.$$

The question when a central $*$-Armendariz $*$-ring is $*$-Armendariz has a partial answer in next proposition.
Proposition 1. If R is a *-Baer and central *-Armendariz *-ring, then R is *-Armendariz.

Proof. Let R be a *-Baer *-ring and $f(x)g(x) = f(x)g^*(x) = 0$ with $f(x) = \sum_{i=0}^{m} a_ix^i, g(x) = \sum_{j=0}^{n} b_jx^j \in R[x]$. Then we have the following equations:

\[
\begin{align*}
 a_0b_0 &= 0 & a_0b_0^* &= 0 & \text{(1)} \\
 a_0b_1 + a_1b_0 &= 0 & a_0b_1^* + a_1b_0^* &= 0 & \text{(2)} \\
 a_0b_2 + a_1b_1 + a_2b_0 &= 0 & a_0b_2^* + a_1b_1^* + a_2b_0^* &= 0 & \text{(3)} \\
 & \vdots & & \vdots & \text{(4)} \\
 a_0b_m + \ldots + a_nb_0 &= 0 & a_0b_m^* + \ldots + a_nb_0^* &= 0. & \text{(5)}
\end{align*}
\]

By hypothesis, there exist a projection $e_i \in R$ such that $L_i(a_i^*) = e_iRe_i$ for all i. We have $e_0a_0^* = e_0a_0 = 0$ and $b_0 = e_0b_0e_0 = b_0e_0$, since $b_0 \in L_i(a_i^*) = e_iRe_i$. Multiplying equation (2) by e_0 from left yields $0 = e_0a_0b_1 + e_0a_1b_0 = a_1b_0$ and $0 = e_0a_0b_1^* + e_0a_1b_0^* = a_1b_0^*$, since R is central *-Armendariz. Hence $a_0b_1 = 0, a_0b_1^* = 0$ and so $b_1 = b_1e_0$. Multiplying equation (3) by e_0 from left yields $0 = e_0a_0b_2 + e_0a_1b_1 + e_0a_2b_0$ and $e_0a_0b_2^* + e_0a_1b_1^* + e_0a_2b_0^*$. Hence equation (3) is reduced to:

\[
\begin{align*}
 a_1b_1 + a_2b_0 &= 0 & a_1b_1^* + a_2b_0^* &= 0 & \text{(6)}
\end{align*}
\]

Similarly, multiplying equation (6) by e_1 from left, we get $a_2b_0 = 0 = a_2b_0^*$ and so $a_1b_1 = 0 = a_1b_1^*$. Continuing this process, we get $a_i b_j = 0$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$ and R is *-Armendariz.

Since each Baer is *-Baer, the condition of *-Baer in the previous proposition can be replaced by Baer. The next example shows that the condition of *-Baer is essential.

Example 2. By Example 1, the *-ring $T(Z_8, Z_8)$ is central *-Armendariz and is not *-Armendariz. Moreover, $T(Z_8, Z_8)$ is not *-Baer, since $r_0 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & Z_8 \\ 0 & 0 \end{pmatrix}$ cannot generated be a projection, since $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} Z_8 & Z_8 \\ Z_8 & Z_8 \end{pmatrix} = \begin{pmatrix} Z_8 & 0 \\ 0 & Z_8 \end{pmatrix} \neq \begin{pmatrix} 0 & Z_8 \\ Z_8 & 0 \end{pmatrix}$

Each central Armendariz *-ring is clearly central *-Armendariz and the converse is true with the following condition.

Proposition 2. If R is central *-Armendariz and $R[x]$ has *-IFP, then R is central Armendariz.
Some generalizations for *-Armendariz *-rings

Proof. Obvious, since \(f(x)g(x) = 0 \), implies \(f(x)R[x]g^*(x) = 0 \), by *-IFP property, and \(R \) is central Armendariz.

One can easily show that the class of central *-Armendariz *-rings is closed under finite direct sums (with changeless involution) and under taking *-subrings.

Proposition 3. The class of central *-Armendariz *-rings is closed under finite direct sums and under taking *-subrings.

Since each reduced *-ring is *-Armendariz [2, Proposition 1], we have the following corollary.

Corollary 1. Each reduced *-ring is central *-Armendariz.

The converse of the previous corollary is not true by **Example 1**, since \(T(Z_8, Z_8) \) is not reduced because the nonzero matrix \(A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \) satisfies \(A^2 = 0 \).

From [2, Proposition 4 and Corollary 2], if \(R \) is a commutative reduced *-ring, then the \(\circ \)-rings \(T_{3E}(R) \) and \(T(R, R) \) are \(\circ \)-Armendariz and so they are central \(\circ \)-Armendariz. we note that the reduced condition is not essential for \(T(R, R) \) (**Example 1**).

The full matrix \(M_n(R) \) over a *-ring \(R \) with transpose involution is not central *-Armendariz, for \(n \geq 3 \), according to the following examples:

Example 3. The *-ring \(M_3(R) \) is not central *-Armendariz, since the polynomials \(f(x) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \), \(x, g(x) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \), \(x \in M_3(R)[x] \), satisfy \(f(x)g(x) = f(x)g^*(x) = 0 \), while \(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \), \(\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) \(\notin \mathcal{C}(M_3(R)) \).

Example 4. The *-ring \(M_4(R) \) is not central *-Armendariz, since the polynomials \(f(x) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, g(x) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)
Usama A. Aburawash and Bsmaa M. ELgamudi

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\] \(x \in M_4(R)[x] \), satisfy \(f(x)g(x) = f(x)g^*(x) = 0 \), while

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \notin \mathcal{C}(M_4(R)).
\]

The next example gives a *-Abelian *-ring which is not central *-Armendariz.

Example 5. \(T_2(\mathbb{Z}_4) \), with adjoint involution * defined by:

\[
\begin{pmatrix}
a & b \\
0 & c
\end{pmatrix}^* =
\begin{pmatrix}
c & -b \\
0 & a
\end{pmatrix}
\] is not central *-Armendariz, since the polynomials

\[
f(x) = \begin{pmatrix}
2 & 2 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} x, \quad g(x) = \begin{pmatrix}
2 & 2 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},
\]

satisfy \(f(x)g(x) = f(x)g^*(x) = 0 \), while

\[
\begin{pmatrix}
2 & 2 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 2 \\
0 & 0
\end{pmatrix} \notin \mathcal{C}(T_2(\mathbb{Z}_4)).
\]

Moreover, the only projections are

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

which are central, so \(T_2(\mathbb{Z}_4) \) is *-Abelian.

We now give necessary and sufficient conditions for a *-Abelian *-ring \(R \) to be central *-Armendariz.

Proposition 4. For a *-Abelian *-ring \(R \) the following statements are equivalent:

1. \(R \) is central *-Armendariz.

2. \(eR \) and \((1 - e)R \) are central *-Armendariz for every projection \(e \) of \(R \).

Proof. (1) \(\Rightarrow \) (2) is obvious by **Proposition 3.**

(2) \(\Rightarrow \) (1). Let \(f(x)g(x) = f(x)g^*(x) = 0 \) with

\[
f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x],
\]

then \(ef(x)g(x) = ef(x)eg(x) = ef(x)g^*(x) = ef(x)eg^*(x) = 0 \) and

\[
(1 - e)f(x)g(x) = (1 - e)f(x)(1 - e)g(x) = (1 - e)f(x)g^*(x) = (1 - e)f(x)(1 - e)g^*(x) = 0,
\]

since \(e \) is central. By assumption, we have \(ea_ib_j \) is central in \(eR \) and \((1 - e)a_ib_j \) is central in \((1 - e)R \) for all \(0 \leq i \leq m, 0 \leq j \leq n \). Hence \(a_ib_j = ea_ib_j + (1 - e)a_ib_j \) is central in \(R \) and \(R \) is central *-Armendariz.

\[\square\]

Summarizing the results of this section, we have:

\[
\begin{array}{c}
\text{Reduced} \\
\downarrow
\end{array} \Rightarrow \begin{array}{c}
\text{Armendariz} \\
\downarrow
\end{array} \Rightarrow \begin{array}{c}
\text{central} - \text{Armendariz} \\
\downarrow
\end{array} \Rightarrow \begin{array}{c}
\text{Abelian} \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
\text{*-Armendariz} \\
\downarrow
\end{array} \Rightarrow \begin{array}{c}
\text{central} \text{-*-Armendariz} \\
\downarrow
\end{array} \Rightarrow \begin{array}{c}
\text{*-Abelian}
\end{array}
\]
3 Extensions of central *-Armendariz *-rings

In this section, the property of central *-Armendariz is shown to be extended from the *-ring to its polynomial, localization and Laurent polynomial *-rings.

Theorem 1. A *-ring R is central *-Armendariz if and only if $R[x]$ is central *-Armendariz.

Proof. Let R be a central *-Armendariz *-ring and $f(y)g(y) = f(y)g^*(y) = 0$ with $f(y) = \sum_{i=0}^{m} f_i y^i, g(y) = \sum_{j=0}^{n} g_j y^j \in R[x][y]$ with $f_i = a_i + a_i x + \cdots + a_{im} x^m, g_j = b_{j0} + b_{j1} x + \cdots + b_{jn} x^n \in R[x]$. Let $t = \deg f_0 + \deg f_1 + \cdots + \deg f_m + \deg g_0 + \deg g_1 + \cdots + \deg g_n$ where the degree is as polynomials in x and the degree of the zero polynomials is taken to be zero. Then $f(x^t) = \sum_{i=0}^{m} f_i x^{ti}, g(x^t) = \sum_{j=0}^{n} g_j x^{tj} \in R[x]$ and the set of coefficients of the f_i's (resp., g_j's) equals the set of coefficients of the $f(x^t)$ (resp., $g(x^t)$). Since $f(y)g(y) = f(y)g^*(y) = 0$ and x commutes with elements of R, $f(x^t)g(x^t) = f(x^t)g^*(x^t) = 0$. Since R is central *-Armendariz, $a_{is} b_{jr} \in \mathcal{C}(R)$, where $0 \leq s \leq m, 0 \leq r \leq n$ and $\mathcal{C}(R)$ is closed under addition. Thus $f_i g_j \in \mathcal{C}(R[x])$.

The sufficient condition is clear by **Proposition 3.**

Let R be a *-ring and S be a multiplicatively closed subset of R consisting of nonzero central regular elements, then the localization of R to S is the *-ring $S^{-1}R = \{u^{-1} a | u \in S, a \in R\}$, with involution * defined as:

$$ (u^{-1}a)^* = u^{-1}a^* $$

Proposition 5. A *-ring R is central *-Armendariz if and only if $S^{-1}R$ is central *-Armendariz.

Proof. By **Proposition 3**, it suffices to prove the necessary condition. Let R be a central *-Armendariz *-ring and $F(x)G(x) = F(x)G^*(x) = 0$ with $F(x) = \sum_{i=0}^{m} \alpha_i x^i, G(x) = \sum_{j=0}^{n} \beta_j x^j \in S^{-1}R[x]$, where $\alpha_i = u^{-1}a_i, \beta_j = v^{-1}b_j$, and $a_i, b_j \in R, u, v \in S$. Hence

$$ F(x)G(x) = (u^{-1}a_0 + u^{-1}a_1 x + \cdots + u^{-1}a_m x^m)(v^{-1}b_0 + v^{-1}b_1 x + \cdots + v^{-1}b_n x^n) $$

$$ = u^{-1}v^{-1}a_0 b_0 + u^{-1}v^{-1}(a_0 b_1 + a_1 b_0)x + \cdots + u^{-1}v^{-1}(a_0 b_n + \cdots + a_m b_0)x^{m+n} $$

$$ = (vu)^{-1}(a_0 b_0 + (a_0 b_1 + a_1 b_0)x + \cdots + (a_0 b_n + \cdots + a_m b_0)x^{m+n}) $$

$$ = (vu)^{-1}f(x)g(x) = 0, $$

$$ F(x)G^*(x) = (u^{-1}a_0 + u^{-1}a_1 x + \cdots + u^{-1}a_m x^m)(v^* - 1 b_0^* + v^* - 1 b_1^* x + \cdots + v^* - 1 b_n^* x^n) $$

$$ = u^{-1}v^* - 1 a_0 b_0^* + u^{-1}v^* - 1 (a_0 b_1^* + a_1 b_0^*)x + \cdots + u^{-1}v^* - 1 (a_0 b_n^* + \cdots + a_m b_0^*)x^{m+n} $$

$$ = (v^* u)^{-1}(a_0 b_0^* + (a_0 b_1^* + a_1 b_0^*)x + \cdots + (a_0 b_n^* + \cdots + a_m b_0^*)x^{m+n}) $$

$$ = (v^* u)^{-1}f(x)g^*(x) = 0, $$

since S is contained in the center of R, so $f(x)g(x) = f(x)g^*(x) = 0$. By hypothesis $a_i b_j \in \mathcal{C}(R)$ for all i, j which implies $a_i \beta_j = (uv)^{-1}a_i b_j = (uv)^{-1}r_k a_i b_j = \delta_k a_i \beta_j$ for all $\delta_k = w^{-1}r_k$ with $w \in S, r \in R$. Therefore $S^{-1}R$ is central *-Armendariz. □
From Proposition 5, the following results are straightforward.

Corollary 2. If R is a *-Armendariz *-ring, then $S^{-1}R$ is central *-Armendariz.

Corollary 3. If $S^{-1}R$ is a *-Armendariz *-ring, then R is central *-Armendariz.

The *-ring of Laurent polynomials in x, with coefficients in a *-ring R, consists of all formal sums $f(x) = \sum_{i=k}^{m} a_i x^i$ with obvious addition and multiplication, where $a_i \in R$ and k, m are (possibly negative) integers and with involution $*$ defined as $f^*(x) = \sum_{i=k}^{m} a_i^* x^i$. We denote this ring as usual by $R[x,x^{-1}].$

Corollary 4. For a *-ring R, $R[x]$ is central *-Armendariz if and only if $R[x,x^{-1}]$ is central *-Armendariz.

Proof. The sufficient condition is obvious by Proposition 3. Clearly $S = \{1,x,x^2,\cdots\}$ is a multiplicatively closed subset of $R[x]$. Since $R[x,x^{-1}] = S^{-1}R[x]$, it follows that $R[x,x^{-1}]$ is central *-Armendariz by Proposition 5.

4 weak *-Armendariz *-rings

In this section, we give another generalization for *-Armendariz *-rings.

Definition. A *-ring R is said to be weak *-Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_i x^{i}$ and $g(x) = \sum_{j=0}^{n} b_j x^{j} \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$, then $a_i b_j \in \text{nil}(R)$ for all i, j (consequently $a_i^* b_j \in \text{nil}(R)$).

Each weak Armendariz *-ring is clearly weak *-Armendariz and the converse is true with the following condition.

Proposition 6. If R is weak *-Armendariz and $R[x]$ has *-IFP, then R is weak Armendariz.

Proof. Let $f(x)g(x) = 0$ for some $f(x), g(x) \in R[x]$. By the *-IFP property $f(x)R[x]g^*(x) = 0$, hence $a_i b_j \in \text{nil}(R)$ and R is weak Armendariz.

One can easily show that the class of weak *-Armendariz *-rings is closed under finite subdirect sums (with changeless involution) and under taking *-subrings.

Proposition 7. Let R be a finite subdirect sum of weak *-Armendariz *-rings. Then R is weak *-Armendariz.
Proof. Let $I_k(k = 1, 2, \cdots, l)$ be $*$-ideals of R such that each R/I_k is weak $*$-Armendariz and $\cap_{k=1}^l I_k = 0$. Suppose that two polynomials $f(x) = \sum_{i=0}^m a_i x^i$, $g(x) = \sum_{j=0}^n b_j x^j \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$. Then there exists $p_k \in N$ such that $(\bar{a}_i \bar{b}_j)^p_k = 0$ in R/I_k. Thus $(a_ib_j)^p_k \in I_k$. Set $p = p_1 p_2 \cdots p_l$. Then $(a_ib_j)^p \in I_k$ for any k. Which implies that $(a_ib_j)^p = 0$. Thus R is weak $*$-Armendariz. □

Proposition 8. The class of weak $*$-Armendariz $*$-rings is closed under taking $*$-subrings.

Proposition 9. A commutative $*$-ring R is weak $*$-Armendariz if and only if the \circ-ring $\mathbb{T}_{nE}(R)$, with adjoint involution \circ, is weak \circ-Armendariz.

Proof. By **Proposition 8**, it suffices to prove the necessary condition.
Let R be a weak $*$-Armendariz $*$-ring and $f(x)g(x) = f(x)g^*(x) = 0$ with $f(x) = \sum_{i=0}^m A_i x^i, g(x) = \sum_{j=0}^n B_j x^j \in \mathbb{T}_{nE}(R)[x]$, where

$$A_i = \begin{pmatrix} a_i & a_{12i} & a_{13i} & \cdots & a_{1ni} \\ 0 & a_i & a_{23i} & \cdots & a_{2ni} \\ 0 & 0 & a_i & \cdots & a_{3ni} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_i \end{pmatrix}, \quad B_j = \begin{pmatrix} b_j & b_{12j} & b_{13j} & \cdots & b_{1nj} \\ 0 & b_j & b_{23j} & \cdots & b_{2nj} \\ 0 & 0 & b_j & \cdots & b_{3nj} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_j \end{pmatrix} \in \mathbb{T}_{nE}(R).$$

Hence $(\sum_{i=0}^m a_i x^i)(\sum_{j=0}^n b_j x^j) = 0 = (\sum_{i=0}^m a_i x^i)(\sum_{j=0}^n b_j x^j)$. Since R is weak $*$-Armendariz, there exists $k \in \mathbb{N}$ such that $(a_ib_j)^k = 0$ for all i, j

and $(A_iB_j)^k = \begin{pmatrix} 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ 0 & 0 & 0 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$. Therefore $(A_iB_j)^{kn} = 0$ and $\mathbb{T}_{nE}(R)$ is weak \circ-Armendariz. [denotes an element of R]. □

In case of trivial extension $\mathbb{T}(R, R)$ with adjoint involution \circ given by

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^\circ = \begin{pmatrix} a^* & -b^* \\ 0 & a^* \end{pmatrix},$$

we have the following result.

Proposition 10. A commutative $*$-ring R is weak $*$-Armendariz if and only if the \circ-ring $\mathbb{T}(R, R)$ is weak \circ-Armendariz.

Each $*$-Armendariz $*$-ring is clearly weak $*$-Armendariz, but the converse is not true by the following example.

Example 6. Consider the \circ-ring $\mathbb{T}_{4E}(R)$, with adjoint involution \circ. $\mathbb{T}_{4E}(R)$ is weak \circ-Armendariz by **Proposition 9**. Moreover, $\mathbb{T}_{4E}(R)$ is not \circ-Armendariz,
Usama A. Aburawash and Bsmaa M. ELgamudi

since the polynomials $f(x) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, g(x) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} x, g(x) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix},$ satisfy $f(x)g(x) = f(x)g^*(x) = 0,$ while $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \neq 0.$

Since each reduced *-ring is *-Armendariz [2, Proposition 1], we have the following corollary.

Corollary 5. Each reduced *-ring is weak *-Armendariz.

The converse of the previous corollary is not true since, by Proposition 10, the ∗-ring $T(R, R)$ is weak ∗-Armendariz and $T(Z_8, Z_8)$ is not reduced.

A necessary and sufficient conditions for a *-Abelian *-ring R to be weak *-Armendariz is now given.

Proposition 11. For a *-Abelian *-ring R the following statements are equivalent:

1. R is weak *-Armendariz.
2. eR and $(1 - e)R$ are weak *-Armendariz.

Proof. (1) ⇒ (2) is obvious by Proposition 8.

(2) ⇒ (3). Let $f(x)g(x) = f(x)g^*(x) = 0$ with $f(x) = \sum_{i=0}^{m} q_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x], then ef(x)g(x) = ef(x)eg(x) = ef(x)g^*(x) = ef(x)eg^*(x) = 0$ and $(1 - e)f(x)g(x) = (1 - e)f(x)(1 - e)g(x) = (1 - e)f(x)g^*(x) = (1 - e)f(x)(1 - e)g^*(x) = 0,$ since e is central. By assumption, there exists p and q such that $(ea_ib_j)^p = 0$ and $(1 - e)a_ib_j)^q = 0$ for all $0 \leq i \leq m, 0 \leq j \leq n.$ Let $k = \max\{p, q\}.$ Then $e(a_ib_j)^k = 0$ and $(1 - e)(a_ib_j)^k = 0.$ Hence $(a_ib_j)^k = 0$ and R is weak *-Armendariz.

5 Extensions of weak *-Armendariz *-rings

Note first that if a *-ring R has IFP, then $R[x]$ may not have IFP (see, [13, Example 2]). For weak *-Armendariz we have the following results.

Proposition 12. If R has *-IFP, then $R[x]$ is weak *-Armendariz.
Proof. Clear from [4] and [17, Theorem 3.8], since R has *-IFP (has also IFP), then $R[x]$ is weak Armendariz and so weak *-Armendariz.

Recall that a ring R is called right Ore if given $a,b \in R$ with b regular there exist $a_1,b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. Left Ore is defined similarly and R is Ore ring if it is both right and left Ore. For *-rings, right Ore implies left Ore and vice versa. It is a known fact that R is Ore if and only if its classical quotient ring Q of R exists and for *-rings, * can be extended to Q by $(a^{-1}b)^* = b^*(a^*)^{-1}$ (see[14, Lamme 4]).

Proposition 13. Let R be an Ore *-ring and Q be its classical quotient *-ring. If R has *-IFP, then Q is weak *-Armendariz.

Proof. Clear from [4] and [17, Proposition 3.10], since R has *-IFP (has also IFP), then Q is weak Armendariz and so weak *-Armendariz.

From [2, Theorem 1, Proposition 7 and Corollary 5], we have the following:

Corollary 6. Let R be a *-Armendariz *-ring. Then $R[x], S^{-1}R, R[x, x^{-1}]$ are all weak *-Armendariz.

Corollary 7. Let $S^{-1}R$ be a *-Armendariz *-ring, then R is weak *-Armendariz.

6 *-Weak *-Armendariz *-rings

In this section, we introduction further generalization for *-Armendariz; that is *-weak *-Armendariz *-rings. This class is a proper subclass of the class of weak *-Armendariz *-rings.

Definition. A *-ring R is said to be *-weak *-Armendariz if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$, then $a_ib_j \in *-nil(R)$ for all i, j (consequently $a_i b_j^* \in *-nil(R)$).

Each *-weak *-Armendariz *-ring is obviously weak *-Armendariz, while there is no clear connection between *-weak *-Armendariz and weak Armendariz. However, *-weak *-Armendariz R is weak Armendariz if $R[x]$ has *-IFP.

Proposition 14. If R is *-weak *-Armendariz and $R[x]$ has *-IFP, then R is weak Armendariz.

Proof. Obvious, since $f(x)g(x) = 0$, implies $f(x)R[x]g^*(x) = 0$, by *-IFP property, and R is weak Armendariz.

One can easily show that the class of *-weak *-Armendariz *-rings is closed under finite subdirect sums (with changeless involution) and under taking *-subrings.
Proposition 15. Let \(R \) be a finite subdirect sum of \(*\)-weak \(*\)-Armendariz \(*\)-rings. Then \(R \) is \(*\)-weak \(*\)-Armendariz.

Proof. The proof is similar to that of Proposition 7. \(\square \)

Proposition 16. The class of \(*\)-weak \(*\)-Armendariz \(*\)-rings is closed under taking \(*\)-subrings.

By a similar proof to that of Proposition 9 and using Proposition 16, we have analogous results for \(*\)-weak \(*\)-Armendariz \(*\)-ring.

Proposition 17. A commutative \(*\)-ring \(R \) is \(*\)-weak \(*\)-Armendariz if and only if the \(\circ\)-ring \(\Theta_n E(R) \), with adjoint involution \(\circ \), is \(\circ\)-weak \(\circ\)-Armendariz.

Proposition 18. A commutative \(*\)-ring \(R \) is \(*\)-weak \(*\)-Armendariz if and only if the \(\circ\)-ring \(\Theta(R,R) \), with adjoint involution \(\circ \), is \(\circ\)-weak \(\circ\)-Armendariz.

Since each reduced \(\circ\)-ring is \(\circ\)-Armendariz [2, Proposition 1], we have:

Corollary 8. Each reduced \(\circ\)-ring is \(*\)-weak \(*\)-Armendariz.

The converse of the previous corollary is not true since, by Proposition 18, the \(\circ\)-ring \(\Theta(R,R) \) is \(\circ\)-weak \(\circ\)-Armendariz and \(\Theta(Z_8,Z_8) \) is not reduced.

From [2, Proposition 4 and Example 5], if \(R \) is a commutative reduced \(\circ\)-ring, then the \(\circ\)-ring \(\Theta_3 E(R) \) is \(\circ\)-Armendariz while \(\Theta_n E(R) \) is not \(\circ\)-Armendariz when \(n \geq 4 \). Meanwhile, by Propositions 9 and 17, we have the following results.

Corollary 9. If \(R \) is a commutative \(*\)-weak \(*\)-Armendariz \(*\)-ring, then the \(\circ\)-ring \(\Theta_n E(R) \) is weak \(\circ\)-Armendariz.

Corollary 10. If \(R \) is a commutative reduced \(\circ\)-ring, then the \(\circ\)-ring \(\Theta_n E(R) \) is \(\circ\)-weak \(\circ\)-Armendariz.

Examples 3 and 4 declare that the full matrix \(*\)-ring \(M_n(R) \), with transpose involution is not \(*\)-weak \(*\)-Armendariz, for \(n \geq 3 \), since

\[
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\notin \ast-nil(M_3(R)) \text{ and } \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\notin \ast-nil(M_4(R)).
\]

Clearly, each \(\circ\)-Armendariz \(*\)-ring is \(*\)-weak \(*\)-Armendariz, but the converse is not true by Example 6, since the \(\circ\)-ring \(\Theta_{1E}(R) \) is not \(\circ\)-Armendariz and by Proposition 17, \(\Theta_{1E}(R) \) is \(\circ\)-weak \(\circ\)-Armendariz.

By a proof similar to that of Proposition 11, necessary and sufficient conditions for a \(*\)-Abelian \(*\)-ring to be \(*\)-weak \(*\)-Armendariz is now given.
Proposition 19. For a \ast-Abelian \ast-ring R the following statements are equivalent:

1. R is \ast-weak \ast-Armendariz.
2. eR and $(1 - e)R$ are \ast-weak \ast-Armendariz.

From [2, Proposition 4], Proposition 11 and Proposition 19, we have:

Corollary 11. Let R be a \ast-Abelian \ast-ring. Consider the following conditions:

1. R is \ast-Armendariz.
2. eR and $(1 - e)R$ are \ast-Armendariz.
3. eR and $(1 - e)R$ are \ast-weak \ast-Armendariz.
4. R is \ast-weak \ast-Armendariz.
5. R is weak \ast-Armendariz.
6. eR and $(1 - e)R$ are weak \ast-Armendariz.

Then $1 \iff 2 \Rightarrow 3 \iff 4 \Rightarrow 5 \iff 6$

7 Weak \ast-Armendariz \ast-rings and \ast-rings With \ast-IFP

In this section, the relation between weak \ast-Armendariz \ast-rings and \ast-rings having \ast-IFP is studied.

From [4] and [17, Corollary 3.4], the following results are straightforward.

Corollary 12. Every \ast-ring with IFP is weak \ast-Armendariz.

Corollary 13. Every \ast-ring with \ast-IFP is weak \ast-Armendariz.

By [12, Lemma 1.4], each reversible \ast-ring has IFP. Hence, from Corollary 12, it follows that all reversible \ast-ring is weak \ast-Armendariz. However, the converse is not true by the next example.

Example 7. By Proposition 9, the \diamond-ring $T_{4E}(R)$ is weak \diamond-Armendariz. Moreover, $T_{4E}(R)$ has not IFP, since the matrices

$$A = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
B = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix},$$

satisfy $AB = 0$, while $ACB =$
Usama A. Aburawash and Bsmaa M. ELgamudi

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & a_{23} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\neq 0.
\]

Now we see that there exists a weak Armendariz *-ring which has not *-IFP.

Example 8. By [17, Proposition 2.2], the ring \(T_2(R) \) is weak Armendariz. Moreover, \(T_2(R) \) with adjoint involution * has not *-IFP, since the matrices

\[
A = \begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix},
B = \begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix},
\text{satisfy } AB = 0 \text{ while } ACB^* = \begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}\begin{pmatrix}
a & b \\
0 & c \\
\end{pmatrix}\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix} = \begin{pmatrix}
a & 0 \\
0 & 0 \\
\end{pmatrix} \neq 0.
\]

The summarize of the results of the previous three sections are as follows:

\[
\begin{array}{c}
\text{reversible } \Rightarrow \text{IFP} \\
\text{Armendariz } \Rightarrow \text{weak - Armendariz} \\
\text{weak - Armendariz } \Rightarrow \text{weak - * - Armendariz} \\
\text{weak - * - Armendariz } \Rightarrow \text{weak - * - Armendariz} \\
\end{array}
\]

8 Quasi-*-Armendariz *-rings

Here, we give another generalization for *-Armendariz *-rings; that is quasi-*-Armendariz.

Definition. A *-ring \(R \) is called quasi-*-Armendariz if whenever the polynomials \(f(x) = \sum_{i=0}^{m} a_i x^i \) and \(g(x) = \sum_{j=0}^{n} b_j x^j \in R[x] \) satisfy \(f(x)R[x]g(x) = f(x)R[x]g^*(x) = 0 \), then \(a_i Rb_j = 0 \) for all \(i,j \) (consequently \(a_i Rb_j^* = 0 \)).

By a proof similar to [10, Lemma 2.1], we get immediately.

Lemma 1. Let \(f(x), g(x) \) be two elements of \(R[x] \). Then \(f(x)Rg(x) = f(x)Rg^*(x) = 0 \) if and only if \(f(x)R[x]g(x) = f(x)R[x]g^*(x) = 0 \).

By **Lemma 1**, *-Armendariz *-rings are quasi-*-Armendariz, but the converse is not true by the next example:

Example 9. Let \(R \) be a quasi-Armendariz *-ring and \(S \) be a subring of \(M_n(R) \) such that \(e_i S e_j \subseteq S \) for all \(i, j \in \{1, 2, ..., n\} \), then \(S \) is quasi-Armendariz [10, Theorem 3.12] and so quasi-*-Armendariz. Moreover, by **Example 3**, \(M_3(R) \) is not *-Armendariz.
The question when a quasi *-Armendariz *-ring is *-Armendariz has a partial answer.

Proposition 20. Let R be a quasi-*-Armendariz *-ring and $R[x]$ has quasi-*-IFP, then R is *-Armendariz.

Proof. Since $f(x)g(x) = f(x)g^*(x) = 0$, implies $f(x)R[x]g(x) = f(x)R[x]g^*(x) = 0$, by quasi *-IFP property, hence R is *-Armendariz. □

Each quasi Armendariz *-ring is clearly quasi *-Armendariz and the converse is true with the following condition.

Proposition 21. If R is quasi *-Armendariz and $R[x]$ has *-IFP, then R is quasi Armendariz.

Proof. Obvious, since $f(x)R[x]g(x) = 0$, implies $f(x)R[x]g^*(x) = 0$, by *-IFP property, and R is quasi Armendariz. □

Since each *-ring having *-IFP has quasi-*-IFP, the condition of quasi-*-IFP in **Proposition 20** can be replaced by *-IFP.

One can easily show that the class of quasi-*-Armendariz *-rings is closed under finite subdirect sums (with changeless involution), with proof similar to that of **Proposition 7**, and under taking *-subrings.

Proposition 22. Let R be a finite subdirect sum of quasi-*-Armendariz *-rings. Then R is quasi-*-Armendariz.

Proposition 23. The class of quasi-*-Armendariz *-rings is closed under taking *-subrings.

Since a semiprime ring is quasi-Armendariz [10, Corollary 3.8], we have:

Corollary 14. A semiprime-*-ring is quasi-*-Armendariz.

Recall from [1], a *-ring R is *-domain if it has no nonzero *-zero divisor elements and from [5], each domain (Bear) *-ring is *-Baer, each *-Baer (reduced) *-ring is *-reduced and each *-reduced *-ring is semiprime, the following results are straightforward.

Corollary 15. A reduced *-ring is quasi-*-Armendariz.

Corollary 16. A Baer *-ring is quasi-*-Armendariz.

Corollary 17. A domain *-ring is quasi-*-Armendariz.
Example 9 declare that the converse of the previous corollaries is not true, since the *-ring $M_2(R)$ is quasi-*-Armendariz and $M_2(Z_2)$ is not *-reduced where the nonzero matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ satisfies $A^2 = AA^* = 0$.

From Proposition 23, if the ⋄-rings $T_{nE}(R)$ and $T(R,R)$ are quasi-⋄-Armendariz, then R is quasi-*-Armendariz and the converse is true for $n \leq 3$ if R is a commutative reduced *-ring, from [2, Proposition 4, Corollary 2]; that is:

Corollary 18. Let R be a commutative reduced *-ring, then the ⋄-ring $T_{3E}(R)$ is quasi-⋄-Armendariz.

Corollary 19. Let R be a commutative reduced *-ring, then the ⋄-ring $T(R,R)$ is quasi-⋄-Armendariz.

Now, we show that the property of quasi-*-Armendariz is restricted from the full matrix ring to its underlying ring.

Proposition 24. If $M_n(R)$ is a quasi-*-Armendariz *-ring for some $n \geq 1$, with the transpose involution *, then R is also quasi-*- Armendariz.

Proof. Let $M_n(R)$ be a quasi-*-Armendariz *-ring for some $n \geq 1$. Since $R \cong e_{11}M_n(R)e_{11}$, as *-rings, then R is quasi-*-Armendariz, by Proposition 25. □

Summarizing the results of this section, we have:

\[
\begin{array}{c}
domain \\
\downarrow \\
* - domain \\
\downarrow \\
Baer * - ring \quad \implies \quad * - Baer * - ring \\
\downarrow \\
reduced \quad \implies \quad * - reduced \\
\downarrow \\
\downarrow \\
semiprime \quad \implies \quad prime \\
\downarrow \\
Armendariz \quad \implies \quad quasi - Armendariz \\
\downarrow \\
* - Armendariz \quad \implies \quad quasi - * - Armendariz \\
\end{array}
\]

9 Extensions of quasi *-Armendariz *-rings

Finally, the property of quasi *-Armendariz is shown to be extended from the *-ring to its polynomial and *-corner *-rings.

By a similar proof to Theorem 1 and using Proposition 23, we get analogous result for quasi-*-Armendariz *-rings.
Theorem 2. A *-ring R is quasi *-Armendariz if and only if $R[x]$ is quasi *-Armendariz.

Proposition 25. A *-ring R is quasi-*-Armendariz if and only if eRe for every projection e of R is quasi-*-Armendariz.

Proof. By Proposition 23, it suffices to prove the necessary condition. Let R be a quasi *-Armendariz *-ring and $f(x)eRe[x]g(x) = f(x)eRe[x]g^*(x) = 0$ with $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in eRe[x]$. Since $f(x)e = f(x)$ and $eg(x) = g(x)$, we obtain $f(x)R[x]g(x) = f(x)R[x]g^*(x) = 0$. By hypothesis $a_iRb_j = 0$ for each i, j which implies $a_i eReb_j = a_i Rb_j = 0$. Therefore eRe is quasi-*-Armendariz.

References

[10] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommu-

[13] C. Huh, Y. Lee and A. Smoktunowice, Armendariz rings and semicom-
https://doi.org/10.1081/agb-120013179

[14] W. S. Martindale, Rings with involution and polynomial identities, *J. Al-

https://doi.org/10.3792/pjaa.73.14

Okayama Univ.*, **52** (2010), 89-95.

(2006), 2607-2616. https://doi.org/10.1080/00927870600651398

Received: June 19, 2018; Published: July 20, 2018