MI-Injective and MI-Flat Modules

Kaili Wu, Shoujia Gao and Jiaqun Wei

Institute of Mathematics, School of Mathematics Sciences
Nanjing Normal University, Nanjing 210023, China

Copyrigh© 2017 Kaili Wu, Shoujia Gao and Jiaqun Wei. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce MI-injective modules and MI-flat modules. The properties and characterizations of these two classes of modules are provided. We also characterize rings such that all min-injective modules are min-flat in term of MI-flat modules.

Mathematics Subject Classification: 13C11 13C60 16D90

Keywords: MI-injective module, MI-flat module, min-injective module, precover, preenvelope, coherent ring

1 Introduction

Min-injective modules were first introduced by Harada [3] and then studied by Nicholson and Yousif in [5]. In [4], Mao introduced min-flat modules and studied min-coherent rings in term of min-injective modules and min-flat modules. In this paper, we would like introduce two new classes of modules based from min-injective modules, namely MI-injective modules and MI-flat modules. The properties of these two classes of modules are provided. We also characterize MI-injective modules as kernels of some precovers and MI-flat modules as cokernels of some preenvelopes. As a main result, we prove that

1Supported by the National Science Foundation of China (Grant No. 11771212) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

2Corresponding author
every MI-injective module is a direct sum of a reduced MI-injective module and an injective module. We also characterize rings such that all min-injective modules are min-flat in term of MI-flat modules.

Throughout the paper, \(R \) is an associative ring with identity and all modules are unitary. For an \(R \)-module \(M \), the character module \(M^+ := \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})^+ \).

For two left \(R \)-modules \(M \) and \(N \), we use \(\text{Hom}(M, N) \) to stand for \(\text{Hom}_R(M, N) \). Similarly, we have notations \(M \otimes N \), \(\text{Ext}^k(M, N) \) and \(\text{Tor}_k(M, N) \) for \(k \geq 1 \).

Let \(L \) be a class of \(R \)-modules. \(L \) is said to be closed under extensions, if for any exact sequence \(0 \to X \to Y \to Z \to 0 \) with \(X, Z \in L \), it holds that \(Y \in F \) too.

Let \(C \) be a class of \(R \)-modules and \(M \) is a \(R \)-module. Following [2], we say that a homomorphism \(\phi : M \to C \) is a \(C \)-preenvelope if \(C \in C \) and the abelian group homomorphism \(\text{Hom}(\phi, C') : \text{Hom}(C, C') \to \text{Hom}(M, C') \) is surjective for each \(C' \in C \). A \(C \)-preenvelope \(\phi : M \to C \) is said to be a \(C \)-envelope if every endomorphism \(g : C \to C \) such that \(g\phi = \phi \) is an isomorphism. Dually we have the definitions of a \(C \)-precover and a \(C \)-cover. \(C \)-envelopes (\(C \)-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Let \(R \) be a ring. A left \(R \)-module \(M \) is said to be finitely generated (finitely presented, resp.) if there is an exact sequence \(P_0 \to M \to 0 \) (\(P_1 \to P_0 \to M \to 0 \), resp.), where each \(P_i \) is finitely generated projective left \(R \)-modules. In particular, a simple module is always finitely generated.

Recall that a ring \(R \) is called left coherent if every finitely generated left ideal is finitely presented. A ring \(R \) is called left min-coherent if every simple left ideal of \(R \) is finitely presented.

2 MI-injective and MI-flat modules

We firstly recall the following definition, see for instance [5].

Definition 2.1 Let \(R \) be a ring. A left \(R \)-module \(M \) is called min-injective if \(\text{Ext}^1(R/I, M) = 0 \) or equivalently, the sequence \(\text{Hom}(R, M) \to \text{Hom}(I, M) \to 0 \) is exact for any simple left ideal \(I \) of \(R \).

In the following, we introduce two new classes of modules.

Definition 2.2 (1) A left \(R \)-module \(M \) is called MI-injective if \(\text{Ext}^1(G, M) = 0 \) for any min-injective left \(R \)-module \(G \).

(2) A right \(R \)-module \(N \) is said to be MI-flat if \(\text{Tor}_1(N, G) = 0 \) for any min-injective left \(R \)-module \(G \).

Immediately from the standard isomorphism: \(\text{Ext}^1(N, M^+) \cong \text{Tor}_1(M, N)^+ \) for any left \(R \)-module \(N \) and right \(R \)-module \(M \), we have the following results.
Proposition 2.3 A right R-module M is MI-flat if and only if M^+ is MI-injective.

The following result gives some properties of MI-injective modules and MI-flat modules. The proof is also easy, so we omit it.

Proposition 2.4 (1) The class of MI-injective modules is closed under direct products, direct summands and extensions.

(2) The class of MI-flat modules is closed under direct sums, direct summands and extensions.

Recall that, the min-injective dimension of M, denoted by $\text{mid}(M)$, is defined to be the smallest nonnegative integer n such that $\text{Ext}^{n+1}(R/I, M) = 0$ for every simple left ideal I (if no such n exists, set $\text{mid}(M) = \infty$). For instance, an R-module M has the min-injective dimension 0 if and only if M itself is min-injective.

It is easy to see that injective modules are MI-injective and that flat modules are MI-flat. The following result consider the inverse part in the case of coherent rings.

Proposition 2.5 We have the following result for a left coherent ring R:

(1) A left R-module M is injective if and only if M is MI-injective and $\text{mid}(M) \leq 1$.

(2) A right R-module N is flat if and only if N is MI-flat and $\text{fd}(M) \leq 1$.

Proof. (1) Suppose that M is an MI-injective left R-module. Consider an exact sequence $0 \to M \to E \to L \to 0$ with E injective. Then there exists an exact sequence

$$0 = \text{Ext}^1(R/I, E) \to \text{Ext}^1(R/I, L) \to \text{Ext}^2(R/I, M)$$

for any simple left ideal I. Since $\text{mid}(M) \leq 1$, we have that $\text{Ext}^2(R/I, M) = 0$. Hence $\text{Ext}^1(R/I, L) = 0$, that is, L is min-injective. It follows that $\text{Ext}^1(L, M) = 0$ since M is MI-injective. So the exact sequence $0 \to M \to E \to L \to 0$ is split by the definition. Thus M is isomorphic to a direct summand of E, and hence injective.

(2) Suppose N is any MI-flat right R-module. Then N^+ is MI-injective by Proposition 2.3. Note that $\text{Ext}^{n+1}(R/I, N^+) \cong \text{Tor}_{n+1}(N, R/I)^+$ for any simple left ideal I, since R is coherent. So we have that $\text{mid}(N^+) \leq 1$ since $\text{fd}(N) \leq 1$ by the hypothesis. Then N^+ is injective by (1), which implies that N is flat, as desired. \qed

Proposition 2.6 The following are equivalent for a left R-module M.

(1) M is MI-injective.

(2) For every exact sequence $0 \to M \to E \to L \to 0$ with E min-injective, $E \to L$ is a min-injective precover of L.

(3) M is a kernel of a min-injective precover $f : A \rightarrow B$ with A injective.

(4) M is injective with respect to every exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, where C is min-injective.

Proof. (1) \Rightarrow (2) Note that there exists an exact sequence $\text{Hom}(G, E) \rightarrow \text{Hom}(G, L) \rightarrow \text{Ext}^1(G, M)$ for any min-injective left R-module G and that $\text{Ext}^1(G, M) = 0$ as M is MI-injective, so $\text{Hom}(G, E) \rightarrow \text{Hom}(G, L)$ is an epimorphism. It follows that $E \rightarrow L$ is a min-injective precover of L by the definition.

(2) \Rightarrow (3) It is trivial since for any left R-module M, there exists a short exact sequence $0 \rightarrow M \rightarrow E \rightarrow E/M \rightarrow 0$, where E is the injective envelope of M.

(3) \Rightarrow (1). Suppose M is the kernel of a min-injective precover $f : A \rightarrow B$ with A injective. Then there exists an exact sequence $0 \rightarrow M \rightarrow A \xrightarrow{\pi} \text{im}(f) \rightarrow 0$. For any any min-injective left R-module N, we get the induced exact sequence

$$
\text{Hom}(N, A) \xrightarrow{\text{Hom}(N, \pi)} \text{Hom}(N, \text{im}(f)) \xrightarrow{\text{Ext}^1(N, M)} \text{Ext}^1(N, A) = 0.
$$

It is easy to verify that $\pi : A \rightarrow \text{im}(f)$ is also a min-injective precover. So $\text{Hom}(N, \pi)$ is surjective by the definition of precovers. Then $\text{Ext}^1(N, M) = 0$ and M is MI-injective by the definition.

(1) \Rightarrow (4) Clearly, there exists an exact sequence

$$0 \rightarrow \text{Hom}(C, M) \rightarrow \text{Hom}(B, M) \rightarrow \text{Hom}(A, M) \rightarrow \text{Ext}^1(C, M).$$

Note that C is min-injective and that M is MI-injective by the assumption, so we have that $\text{Ext}^1(C, M) = 0$. Hence (4) follows.

(4) \Rightarrow (1). Take any a min-injective left R-module N and consider a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow N \rightarrow 0$ with P projective. Then there is an induced exact sequence

$$\text{Hom}(P, M) \rightarrow \text{Hom}(K, M) \rightarrow \text{Ext}^1(N, M) \rightarrow \text{Ext}^1(P, M) = 0.$$

But $\text{Hom}(P, M) \rightarrow \text{Hom}(K, M)$ is surjective by the assumption of (4). Therefore $\text{Ext}^1(N, M) = 0$ and M is MI-injective, as desired.

The following result characterizes kernels of min-injective covers. Recall that a left R-module M is called reduced if M has no nonzero injective submodules.

Proposition 2.7 Suppose R is a left coherent ring. Then the following are equivalent for a left R-module M:

(1) M is a reduced MI-injective left R-module.

(2) M is a kernel of a min-injective cover $f : A \rightarrow B$ with A injective.

Proof. (1) \Rightarrow (2) Note that the natural map $\pi : E \rightarrow E/M$ is a min-injective precover by Proposition 2.6(3), where E is the injective envelope of M. Since R is left coherent, the module E/M has a min-injective cover [4]. Moreover,
E has no nonzero direct summand K contained in M since M is reduced. So we can get that $\pi : E \to E/M$ is indeed a min-injective cover by [6, Corollary 1.2.8], and then (2) follows.

(2) \Rightarrow (1). Suppose M is the kernel of a min-injective cover $\alpha : A \to B$ with A injective. Then M is MI-injective by Proposition 2.6. Now suppose K is an injective submodule of M. Then K is also an injective submodule of A and hence a direct summand of A. Let $A = K \oplus L$ for some L. Assume that $p : A \to L$ is the projection and $i : L \to A$ is the inclusion. It is easy to see that $\alpha(ip) = \alpha$. In fact, let $a = (k + l) \in A$, then $\alpha(ip)(a) = \alpha(ip)(k + l) = \alpha(l) = \alpha(k + l) = \alpha(a)$, since $\alpha(K) = 0$. Hence ip is an isomorphism since α is a cover. It follows that i is epic. Thus $A = L$ and then $K = 0$. So M is reduced.

\textbf{Theorem 2.8} Let R be a left coherent ring. Then a left R-module M is MI-injective if and only if M is a direct sum of a reduced MI-injective left R-module and an injective left R-module.

\textbf{Proof.} The if part is obvious.

Only if part. Let M be an MI-injective left R-module and consider the exact sequence $0 \to M \to E \to E/M \to 0$, where E is the injective envelope of M. We know that $E \to E/M$ is a min-injective precover of E/M by Proposition 2.6. Since R is left coherent, E/M also has a min-injective cover $L \to E/M$. So we get the following commutative diagram with exact rows for some K:

\[
\begin{array}{ccccccccc}
0 & \to & K & \xrightarrow{f} & L & \xrightarrow{\phi} & E/M & \xrightarrow{\gamma} & 0 \\
| & | & \phi & & | & | & | & | & \\
0 & \to & M & \xrightarrow{\alpha} & E & \xrightarrow{\beta} & E/M & \xrightarrow{\gamma} & 0 \\
| & \sigma & | & | & | & | & | & | & \\
0 & \to & K & \xrightarrow{f} & L & \xrightarrow{\beta} & E/M & \xrightarrow{\gamma} & 0.
\end{array}
\]

Note that $\beta \gamma$ is an isomorphism since $L \to E/M$ is a cover. Then $E \simeq L \oplus \ker(\beta)$. It follows that L and $\ker(\beta)$ is injective. Therefore K is a reduced MI-injective module by Proposition 2.7. Since $\sigma \phi$ is also an isomorphism by the Five Lemma, we have that σ is epic and ϕ is monic and that $M = \ker(\sigma) \oplus \im(\phi)$, where $\im(\phi) \simeq K$ since ϕ is monic. In addition, we have the following commutative diagram:
Hence \(\ker(\sigma) \cong \ker(\beta) \) is injective and we have \(M = \ker(\sigma) \oplus \text{im}(\phi) \), where \(\text{im}(\phi) \cong K \) is a reduced MI-injective left \(R \)-module and \(\ker(\sigma) \) is injective. \(\square \)

Proposition 2.9 Suppose \(R \) is a left coherent ring.

(1) If \(L \) is a cokernel of a min-flat preenvelope \(f : K \to F \) of a right \(R \)-module \(K \) with \(F \) being MI-flat, then \(L \) is MI-flat.

(2) If \(M \) is a finitely presented MI-flat right \(R \)-module, then \(M \) is a cokernel of a flat preenvelope.

Proof. (1) Consider the exact sequence \(0 \to \text{im}(f) \to F \to L \to 0 \) obtained from the assumption. It is easy to check that \(i : \text{im}(f) \to F \) is also a min-flat preenvelope. Let \(N \) be any min-injective left \(R \)-module, then \(N^+ \) is min-flat by [4, Lemma 3.2]. Thus we get an exact sequence \(\text{Hom}(F, N^+) \to \text{Hom}(\text{im}(f), N^+) \to 0 \) by the definition of preenvelope. Equivalently, we have the exact sequence \((F \otimes N)^+ \to (\text{im}(f) \otimes N)^+ \to 0 \). This implies that the sequence \(0 \to \text{im}(f) \otimes N \to F \otimes N \) is exact. On the other hand, since \(F \) is MI-flat, we have \(\text{Tor}_1(F, N) = 0 \). Thus, from the induced long exact sequence

\[0 = \text{Tor}_1(F, N) \to \text{Tor}_1(L, N) \to \text{im}(f) \otimes N \to F \otimes N, \]

we get that \(\text{Tor}_1(L, N) = 0 \). So \(L \) is MI-flat, as desired.

(2) Since \(M \) is a finitely presented right \(R \)-module, we have an exact sequence \(0 \to K \to P \to M \to 0 \) with \(P \) projective and both \(P \) and \(K \) finitely generated. It is enough to show that \(K \to P \) is a flat preenvelope. In fact, suppose \(F \) is any flat right \(R \)-module, then \(F^+ \) is injective. Obviously, it is also min-injective. Hence \(\text{Tor}_1(M, F^+) = 0 \), and so we have the following commutative diagram with the first row exact:

\[
\begin{array}{ccc}
0 & \to & K \otimes F^+ \\
\downarrow \tau_{K,F} & & \downarrow \tau_{P,F} \\
\Hom(K, F)^+ & \xrightarrow{\theta} & \Hom(P, F)^+ \\
\end{array}
\]

Note that, by [1, Lemma 2], \(\tau_{K,F} \) is an epimorphism since \(K \) is finitely generated and \(\tau_{P,F} \) is an isomorphism since \(P \) is finitely presented. Since \(\theta \tau_{K,F} = \tau_{P,F} \alpha \), we obtain that \(\tau_{K,F} \) is also a monomorphism and hence an
isomorphism. Thus θ is a monomorphism. It follows that the homomorphism $\text{Hom}(P, F) \to \text{Hom}(K, F)$ is epic. So $K \to P$ is a flat preenvelope and M is a cokernel of a flat preenvelope.

We call that R is said to be a left MIF ring if every min-injective left R-module is min-flat.

An exact sequence $0 \to A \to B \to C \to 0$ is said to be min-pure exact, if for any simple left ideal I, the induced sequence $0 \to \text{Hom}(R/I, A) \to \text{Hom}(R/I, B) \to \text{Hom}(R/I, C) \to 0$ is exact, or equivalently, the induced sequence $0 \to A \otimes R/I \to B \otimes R/I \to C \otimes R/I \to 0$ is exact (by [1, Lemma 2], since R/I is finitely presented).

M is called a min-pure-injective left R-module, if the functor $\text{Hom}(\cdot, M)$ preserves the exactness of all min-pure exact sequences.

Theorem 2.10 The following are equivalent for a ring R.

1. R is a left MIF ring.
2. Every min-pure-injective left R-module is MI-injective.
3. Every right R-module is MI-flat.
4. Every finitely presented right R-module is MI-flat.

Proof. (1) \Rightarrow (2). Let M be an arbitrary min-pure-injective left R-module. Take any min-injective left R-module N and consider an exact sequence $0 \to N \to E \to L \to 0$ with E injective. The sequence is in fact min-pure from the definition, since there is an induced exact sequence $0 \to \text{Hom}(R/I, N) \to \text{Hom}(R/I, E) \to \text{Hom}(R/I, L) \to \text{Ext}^1(R/I, N) = 0$. On the other hand, there exists an exact sequence $0 \to K \to P \to N \to 0$ with P projective. Note that the exact sequence is also min-pure exact sequence, since N is also min-flat by the assumption and we have an induced exact sequence $0 = \text{Tor}_1(N, R/I) \to K \otimes R/I \to P \otimes R/I \to N \otimes R/I \to 0$. Applying the functor $\text{Hom}(M, \cdot)$, we obtain an induced long exact sequence $0 \to \text{Hom}(P, K) \to \text{Hom}(P, M) \to \text{Hom}(K, M) \to \text{Ext}^1(N, M) \to \text{Ext}^1(P, M) = 0$. As M is min-pure-injective, the sequence $\text{Hom}(P, M) \to \text{Hom}(K, M) \to 0$ is exact. It follows that $\text{Ext}^1(N, M) = 0$ and that M is MI-injective.

(2) \Rightarrow (3). Take any right R-module M, then M^+ is pure injective. It is obviously min-pure injective. So it is also MI-injective by the assumption. Then M is MI-flat by Proposition 2.3.

(3) \Rightarrow (4) is obvious.

(4) \Rightarrow (1). Suppose E is any min-injective left R-module and let M be any finitely presented right R-module. Then M is MI-flat by the assumption. Hence $\text{Tor}_1(M, E) = 0$. It follows that E is flat for the arbitrariness of M. Obviously it is also min-flat. \square
References

Received: October 15, 2017; Published: November 22, 2017