Determining of a Finite Abelian p-Group up to Isomorphism

Yordan Epitropova* and Nako Nacheva

aPlovdiv University ‘P. Hilendarski’ – 24 Tzar Asen Str., Plovdiv, Bulgaria

Copyright © 2017 Yordan Epitropov and Nako Nachev. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Analogically to the invariants of Ulm-Kaplansky we find a new complete system of invariants of a finite Abelian p-group. We come up with formulas which give the cut out of each of those invariant systems through the other. We prove that invariants we have found determine a finite Abelian p-group up to isomorphism. We give the necessary and sufficient condition for the existence of a finite Abelian p-group through all of values of those invariants. We come up with criterion, that given only some of the values of those invariants, guarantees the existence of a finite Abelian p-group, but in this case the group is not uniquely determined.

Mathematics Subject Classification 2010: 20K01; 20K10; 20K99

Keywords: finite Abelian p-group; invariant of Ulm-Kaplansky; group isomorphism

1. Introduction

If G is Abelian p-group, then the sets $G^{p^i} = \{g^{p^i} | g \in G\}$ and $G[p^i] = \{g \in G | g^{p^i} = 1\}$ are subgroups of the group G for every $i \in \mathbb{N}_0$, where \mathbb{N}_0 is the set of non-negative integer. For those subgroups we have
$G^{p^{i+1}} \leq G^{p^{i}}$ and $G[p^i] \leq G[p^{i+1}]$.

(1)

If G is finite then there exists a natural number k, such that $G^{p^k} = 1$. Let k be the smallest number with this property. Then the number p^k is called the exponent of the group G and we shall denote it with $\exp G$. The inclusions in (1) are strong if and only if $p^k < \exp G$.

Consider the factor-groups $G^{p^{i+1}}[p]/G^{p^i}[p]$ for each $i \in \mathbb{N}$. These factor-groups are elementary Abelian p-groups and therefore they are linear spaces over the Galois field $GF(p)$. Put $\alpha_i = \dim_{GF(p)}(G^{p^{i+1}}[p]/G^{p^i}[p])$, $i \in \mathbb{N}$.

The number α_i is called i-th Ulm-Kaplansky invariant of the group G. Let $r(G)$ be the rank of the Abelian p-group G [1]. Then it holds $\alpha_i = r(G^{p^{i+1}}[p]/G^{p^i}[p])$, $i \in \mathbb{N}$. Therefore α_i is the number of direct factors of order p^i in the direct decomposition of G of cyclic p-subgroups.

I. Kaplansky and G. Mackey show [3] that a countable periodic reduced Abelian p-group is uniquely determined up to isomorphism by its invariants (2) for all primes p and countable ordinals i. E. Walker proves [6] that the largest class of Abelian p-groups, for which the Ulm-Kaplansky invariants form a complete system of invariants, are totally-projective groups, introduced by R. Nunke [5]. For groups outside of this class this is not the case [2].

For the finite Abelian p-groups the Ulm-Kaplansky invariants not only do form a complete system of invariants, but they are also independent of each other. That means that if we chose $\alpha_1, \alpha_2, \ldots, \alpha_n$ to be arbitrary non-negative integers then there shall exists a finite Abelian p-group G, for which the chosen numbers shall be the Ulm-Kaplansky invariants of G. This group is unique up to isomorphism and for $\alpha_n \neq 0$ we have $\exp G = p^n$. This result has different generalisations (for example [4, 1]).

2. New complete system of invariants of a finite Abelian p-group

Let G be a finite Abelian p-group, where p is prime. Put

$$|G[p^i]| = p^{\beta_i}. \hspace{1cm} (3)$$

Lemma 1. As per (3) if $p^i \leq \exp G$, then $\beta_i \geq i$. An equality is achieved if and only if G is a cyclic group.
The proof follows from (3) and from the second inequalities of (1).

In the next lemma we shall denote with p^α the exponent of the finite Abelian p-group G.

Lemma 2. The numbers β_i from (3) are determined from the Ulm-Kaplansky invariants by

$$\beta_i = \sum_{j=1}^i j \alpha_j + i \sum_{j=i+1}^n \alpha_j = \alpha_1 + 2\alpha_2 + \ldots + i\alpha_i + i\alpha_{i+1} + \ldots + i\alpha_n$$

(4)

for each $i=1, 2, \ldots, n$ where $n = \log_p(\exp G)$.

Proof. Decompose G in a direct product of cyclic p-groups. This decomposition implies a respective decomposition of $G[p^s]$. It contains all cyclic direct factors of G, whose orders do not exceed p^s. When $i < n$ each of the rest of the factors contain exactly one subgroup of order p^i. The number of these factors is equal to $s = \alpha_{i+1} + \alpha_{i+2} + \ldots + \alpha_n$ and the order of their direct product is p^{s+i}. The order of the direct product of the cyclic factors of G, whose orders do not exceed p^i is p^t, where $t = \alpha_i + 2\alpha_2 + \ldots + i\alpha_i$. Then the order of $G[p^i]$ is p^{t+i}, from where (4) follows.

Lemma 2 gives an expression of the numbers β_i by $\alpha_1, \alpha_2, \ldots, \alpha_n$. Now we shall find α_i, expressed by $\beta_1, \beta_2, \ldots, \beta_n$.

Lemma 3. For the numbers α_i from (4) we have

$$\alpha_i = 2\beta_i - \beta_2, \quad \alpha_i = 2\beta_i - \beta_{i-1} - \beta_{i+1} \text{ for } i = 2, 3, \ldots, n-1,$$

$$\alpha_n = \beta_n - \beta_{n-1}, \quad \alpha_{n+k} = 0 \text{ for } k \in \mathbb{N}. \quad (5)$$

Proof. For $i = 1$ formula (4) implies

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \beta_1,$$

and for $i = 2$ we have

$$\alpha_1 + 2\alpha_2 + \ldots + 2\alpha_n = \beta_2.$$

Multiplying the first equality with 2 and subtracting the second equality from it we get $\alpha_1 = 2\beta_1 - \beta_2$. For $i = 2, 3, \ldots, n-1$ let us get from (4) the formulas for $i-1, i, i+1$. They are

$$\alpha_i + 2\alpha_2 + \ldots + (i-1)\alpha_{i-1} + (i-1)\alpha_i + \ldots + (i-1)\alpha_n = \beta_{i-1}.$$
\[\alpha_1 + 2\alpha_2 + \ldots + i\alpha_i + i\alpha_{i+1} + \ldots + i\alpha_n = \beta_i; \]

\[\alpha_1 + 2\alpha_2 + \ldots + (i+1)\alpha_{i+1} + (i+1)\alpha_{i+2} + \ldots + (i+1)\alpha_n = \beta_{i+1}. \]

Multiplying the second of these equalities with 2 and subtracting the first and the third equalities from the second we obtain \(\alpha_i = 2\beta_i - \beta_{i-1} - \beta_{i+1} \). Finally by subtracting from the equality

\[\alpha_1 + 2\alpha_2 + \ldots + n\alpha_n = \beta_n \]

the equality

\[\alpha_1 + 2\alpha_2 + \ldots + (n-1)\alpha_{n-1} + (n-1)\alpha_n = \beta_{n-1} \]

we obtain \(\alpha_n = \beta_n - \beta_{n-1} \). #

We know that in order to exist an Abelian \(p \)-group with invariants \(\alpha_1, \alpha_2, \ldots, \alpha_n \), these numbers can be arbitrary non-negative integers. We see from Lemma 3 that the numbers \(\beta_1, \beta_2, \ldots, \beta_n \) can not be arbitrary non-negative because some of \(\alpha_i \) could obtain negative values. Now we shall establish the conditions which the numbers \(\beta_i \) must satisfy so that there exists a finite Abelian \(p \)-group \(G \), for which \([G[p^i]] = p^{\beta_i}, \quad i = 1, 2, \ldots, n = \log_p |G| \).

Theorem 4. There exists a finite Abelian \(p \)-group \(G \) with \(\exp G = p^n \) and \(|G[p^i]| = p^{\beta_i} \) if and only if the numbers \(\beta_1, \beta_2, \ldots, \beta_n \) satisfy the inequalities

\[\beta_1 \geq \beta_2 \geq \beta_3 - \beta_2 \geq \ldots \geq \beta_n - \beta_{n-1} > 0. \quad (6) \]

Proof. Let there exists such a group \(G \) so that the Ulm-Kaplansky invariants of \(G \) are \(\alpha_1, \alpha_2, \ldots, \alpha_n \). Then they shall be determined by the formulas (5) of Lemma 3. Since the invariants \(\alpha_i \) are non-negative integers then (5) implies the inequalities (6).

Conversely if the inequalities (6) are satisfied, then (5) determine \(\alpha_i \) and we have \(\alpha_i \geq 0 \) for each \(i = 1, 2, \ldots, n-1 \) and \(\alpha_n > 0 \). Then for the group \(G \), determined by these Ulm-Kaplansky invariants, we have \(\exp G = p^n \) and \(|G[p^i]| = p^{\beta_i}, \quad i = 1, 2, \ldots, n. \) #

For the numbers \(\beta_i \) there is one more inequality, which we will need later.
Lemma 5. If $1 \leq i < j \leq n$ and the numbers β_i, β_j are from (3), then $i \beta_j \leq j \beta_i$.

Proof. The formulas (4) imply

$$\beta_i = \alpha_i + 2\alpha_2 + \ldots + i\alpha_i + \ldots + i\alpha_n,$$

$$\beta_j = \alpha_i + 2\alpha_2 + \ldots + j\alpha_j + \ldots + j\alpha_n.$$

Multiplying the first equality with j and the second with i and subtracting them we get

$$j\beta_i - i\beta_j = (j-i)\alpha_i + 2(j-i)\alpha_2 + \ldots + i(j-i)\alpha_i + i(j-i-1)\alpha_{i+1} + \ldots + i\alpha_{j-1} \geq 0.$$

3. Incomplete system of invariants of a finite Abelian p-group

Now we shall deduce a criterion that would ensure the existence of a finite Abelian p-group G, if only some of the values of $[G[p^l]]$ are given. To this aim we shall give the following definitions.

Definition 1. Let $m < n$ be natural numbers and let $\beta_m, \beta_{m+1}, \ldots, \beta_n$ be a system of natural numbers. We shall call this system normal of the first type if it satisfies the following inequalities

$$\frac{1}{m} \beta_m \geq \beta_{m+1} - \beta_m \geq \beta_{m+2} - \beta_{m+1} \geq \ldots \geq \beta_n - \beta_{n-1} > 0.$$

Definition 2. Let $m < n$ be natural numbers and let $\beta_1, \beta_n, \beta_{n-1}, \ldots, \beta_n$ be a system of natural numbers. We shall call this system normal of the second type if it satisfies the following inequalities

$$\beta_1 \geq \frac{1}{m} \beta_m \geq \beta_{m+1} - \beta_m \geq \beta_{m+2} - \beta_{m+1} \geq \ldots \geq \beta_n - \beta_{n-1} > 0.$$

Theorem 6. Let $m < n$ be natural numbers and let a normal system of the first or the second type be given. Then there exists a finite Abelian p-group G, such that $[G[p^l]] = p^\beta$, where β_i are the numbers of the given normal system.

Proof. 1). Let the given normal system be of the first type. From the first inequality in (7) we get $(m+1)\beta_m - m\beta_{m+1} \geq 0$. Consequently there exists
Abelian p-group A, for which $|A| = p^{(m+1)\beta_n - m\beta_{n+1}}$. Choose A such that $\exp A \leq p^m$. This is possible because the limit of $\exp A$ above does not affect on the choice of A. Let now us make an Abelian group B, for which $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$, $\alpha_i = 2\beta_i - \beta_{i-1} - \beta_{i+1}$ for $i = m+1, m+2, \ldots, n-1$ when $m+1 < n$, $\alpha_n = \beta_n - \beta_{n-1}$. If $m+1 = n$, then we put $\alpha_i = 0$ for $i \leq n-1$. In view of (7) these settings are possible. Now let us put $G = A \times B$. It can be immediately verified that the group G satisfies the conditions of the theorem.

2) Now let the normal system be of the second type. From the first two inequalities of (8) follows $\beta_1 + \beta_m - \beta_{m+1} \geq 0$. Then there exists an Abelian p-group A, for which $|A[p]| = p^{\beta_1 + \beta_m - \beta_{m+1}}$ and $\exp A \leq p^m$. The maximum order of such group is p^s, where $s = m(\beta_1 + \beta_m - \beta_{m+1})$. We put $t = (m+1)(\beta_m - m\beta_{m+1})$. From the first inequality of (8) we have $s \geq t$ and from the second we have $t \geq 0$. Then A can be chosen such that $|A| = p^t$. Further we choose an Abelian group B as in case 1). This is possible, because all the inequalities in (7) participate in (8). Then the group $G = A \times B$ satisfies the required conditions.

4. Discussion

The group G, defined in the proof of Theorem 6 is not unique, because A is not determined uniquely. In case 1) A will be unique if and only if in the first inequality of (7) we have equality and then we obtain $A = 1$. In case 2) A is unique if and only if in the first two inequalities of (8) we have equality and then we obtain $A = 1$.

References

[6] E. Walker, Ulm’s theorem for totally projective groups, Proceedings of the
Determining of a finite Abelian p-group up to isomorphism

https://doi.org/10.1090/s0002-9939-1973-0311805-3

Received: April 6, 2017; Published: June 22, 2017