Absolute-Valued Algebras Satisfying

$$ (xx^2)x = x(x^2x) $$

K. Diaby, O. Diankha and M. Traoré

Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université Cheikh Anta Diop, Dakar, Senegal

A. Rochdi

Département de Mathématiques et Informatique
Faculté des Sciences Ben M’Sik
Université Hassan II, 7955 Casablanca, Morocco

Abstract

It is well known that every absolute-valued algebra of dimension \(\leq 4 \) satisfying \((xx^2)x = x(x^2x)\) is flexible and isomorphic to either \(\mathbb{R}, \mathbb{C}, \mathbb{C}^*, \mathbb{H} \) or \(\mathbb{H}^* \) [4]. Here we show that every eight-dimensional absolute-valued algebra containing four-dimensional sub-algebras and satisfying \((xx^2)x = x(x^2x)\) is also flexible and isomorphic to either \(\mathbb{O}, \mathbb{O}^* \) or \(\mathbb{P} \).

Mathematics Subject Classification: 17A35, 17A36

Keywords. Absolute-valued (flexible, third-power associative) algebra, duplication process
1. Introduction

It is well known that every real third-power associative algebra satisfies the identity

\[(xx^2)x = x(x^2x)\] \hspace{1cm} (1.1)

[4, Proposition 2.2] but the converse is false [3, Remarque 1.17]. Also, every absolute-valued algebra of dimension \(\leq 4 \) satisfying (1.1) is third-power associative (even flexible) and isomorphic to either \(\mathbb{R}, \mathbb{C}, \mathbb{C}^*, \mathbb{H} \) or \(\mathbb{H} \) [4, Theorem 3.10]. In addition, there are no known examples of real division algebras satisfying (1.1) which are not third-power associative. On the other hand it is well known that every finite-dimensional third-power associative absolute-valued algebra is flexible and isomorphic to either \(\mathbb{R}, \mathbb{C}, \mathbb{C}^*, \mathbb{H}, \mathbb{H}, \mathbb{O}, \mathbb{O}^* \) or \(\mathbb{P} \) ([6], [10, Theorem 2.7]). Thus, it is natural to ask whether an 8-dimensional absolute-valued algebra satisfying (1.1) is flexible.

In the present paper we will provide an affirmative answer through the additional assumption of the existence of four-dimensional subalgebras (Theorem 2). We show that every 8-dimensional absolute-valued algebra satisfying \((xx^2)x = x(x^2x)\) and containing 4-dimensional sub-algebras is flexible and isomorphic to either \(\mathbb{O}, \mathbb{O}^* \) or \(\mathbb{P} \).

2. Notations and preliminary results

For reasons of simplicity all algebras \(A \) will be considered over the field \(\mathbb{R} \) of real numbers. The algebra \(A \) is said to be third-power associative if it satisfies \(xx^2 = x^2x \) for all \(x \). It is said to be flexible if it satisfies \((xy)x = x(yx)\) for all \(x, y \). An element \(a \in A \) is said to be central if it commutes with all elements of \(A \).

\(A \) is said to be a division algebra if the operators \(L_x, R_x \) of left and right multiplication by \(x \) are bijective for all non-zero \(x \). It is said to be an absolute-valued algebra if the space \(A \) is endowed with a norm \(|| \cdot || \) such that \(||xy|| = ||x|| ||y|| \) for all \(x, y \). Clearly a finite-dimensional absolute-valued algebra is a division algebra. It is well known that every finite dimensional absolute-valued algebra \(A \) is isotopical to either \(\mathbb{R}, \mathbb{C} \) (complex numbers), \(\mathbb{H} \) (quaternions) or \(\mathbb{O} \) (octonions), so \(A \) has dimension 1, 2, 4 or 8 and the absolute value of \(A \) comes from an inner product [1, Theorem 2].

Let now \(A \) be one of absolute-valued algebras \(\mathbb{H}, \mathbb{O} \). Its standard involution \(\sigma_A : x \rightarrow \overline{x} \) is a linear isometry of the euclidian space \(A \) fixing 1. Let now \(f, g \)
be linear isometries of the euclidian space \(\mathbb{A} \), we denote by \(\mathbb{A}_{f,g} \) the absolute-valued algebra obtained by endowing the normed space \(\mathbb{A} \) with the product \(x \odot y = f(x)g(y) \). The absolute-valued algebra \(\mathbb{A}_{\sigma_{\mathbb{A}}, \sigma_{\mathbb{A}}} := \mathbb{A} \) contains a non-zero central idempotent \(1 \). It is the only non-zero central idempotent of algebra \(\mathbb{A} \) [9, Theorem 3.6].

We have the following preliminary result:

Proposition 1. Let \(f, g : \mathbb{A} \rightarrow \mathbb{A} \) be two linear isometries fixing \(1 \). Then

1. \(\mathbb{A}_{f,g} \) has unit-element if and only if \(f = g = I_{\mathbb{A}} \) (identity mapping).
2. \(\mathbb{A}_{f,g} \) is isomorphic to \(\mathbb{A} \) if and only if \(f = g = \sigma_{\mathbb{A}} \).

Proof. (1). If \(\mathbb{A}_{f,g} := (\mathbb{A}, \odot) \) contains unit-element \(e \) then \(e \) is the only non-zero idempotent. As \(1 \) is a non-zero idempotent of \(\mathbb{A}_{f,g} \) we have: \(e = 1 \) and \(x = x \odot 1 = f(x)g(1) = f(x) \) for all \(x \in \mathbb{A} \). So \(f = I_{\mathbb{A}} = g \). The converse is clear.

(2). Let \(\Phi : \mathbb{A}_{f,g} \rightarrow \mathbb{A} \) be an isomorphism of algebras. We have:

\[
\Phi(f(x)g(y)) = \Phi(x) \Phi(y) \quad \text{for all} \quad x, y \in \mathbb{A}.
\]

On the other hand \(\Phi^{-1}(1) \) is the only one non-zero central idempotent in algebra \(\mathbb{A}_{f,g} \). So \(\Phi^{-1}(1) = 1 \), and \(f = g \) [9, Theorem 4.4]. Thus \(\Phi(1) = 1 \) and then \(\Phi \) commutes with \(\sigma_{\mathbb{A}} \). On the other hand, the equality (2.2) gives, for \(y = 1 : \Phi(f(x)) = \Phi(x) = \Phi(\bar{x}) \), that is \(f = \sigma_{\mathbb{A}} = g \). The converse is clear.

Let now \(\varphi, \psi, f, g \) be four linear isometries of the euclidian space \(\mathbb{H} \) with \(\varphi(1) = f(1) = 1 \). We denote by \((\varphi, \psi) \) the linear isometry of the euclidian space \(\mathbb{H} \times \mathbb{H} \) defined by \((\varphi, \psi)(x, y) = (\varphi(x), \psi(y)) \). We define a product on the vector space \(\mathbb{H} \times \mathbb{H} \) by:

\[
(x, y) \odot (u, v) = \left(\varphi(x), \psi(y) \right) \ast \left(f(u), g(v) \right)
\]

\(\ast \) means the usual Cayley-Dickson product. We obtain an absolute-valued algebra \((\mathbb{H} \times \mathbb{H}, \odot) \) denoted by \(\mathbb{H} \times \mathbb{H}_{(\varphi, \psi), (f, g)} \). Such an algebra is said to be obtained from \(\mathbb{H}_{f, \varphi} \) par duplication [2, p. 211].

3. **When does \(\mathbb{H} \times \mathbb{H}_{(I_{\mathbb{H}}, f), (I_{\mathbb{H}}, g)} \) satisfy \((xx^2)x = x(x^2x) \)?**

Let \(f, g \) be two linear isometries of the euclidian space \(\mathbb{H} \). We have the following two preliminary results:
Lemma 1. If the algebra $A = \mathbb{H} \times \mathbb{H}(I_{\mathbb{H}}, (I_{\mathbb{H}}, f), (I_{\mathbb{H}}, g)) := (\mathbb{H} \times \mathbb{H}, \odot)$ satisfies $(xx^2)x = x(x^2x)$ then the equality

\begin{equation}
(g(y)(f \circ g)(y) = (f \circ g)(y)f(y)
\end{equation}

holds for all $y \in \mathbb{H}$.

Proof. For $y \in \mathbb{H}$ we put $(0, y) := Y$ and we have

$Y \odot Y = (0, f(y)) \ast (0, g(y))$

$= (-g(y)f(y), 0)$

$(Y \odot Y) \odot Y = (-g(y)f(y), 0) \ast (0, g(y))$

$= -|g(y)|^2(0, f(y))$

$= -|y|^2(0, f(y))$

$Y \odot (Y \odot Y) = (0, f(y)) \ast (-g(y)f(y), 0)$

$= (0, -f(y)f(y)g(y))$

$= -|y|^2(0, g(y))$

$(Y \odot (Y \odot Y)) \odot Y = -|y|^2(0, (f \circ g)(y)) \ast (0, g(y))$

$= |y|^2(g(y)(f \circ g)(y), 0)$

$Y \odot ((Y \odot Y) \odot Y) = -|y|^2(0, f(y)) \ast (0, (g \circ f)(y))$

$= |y|^2((g \circ f)(y)f(y), 0)$.

So

$(Y \odot (Y \odot Y)) \odot Y - Y \odot ((Y \odot Y) \odot Y) = |y|^2(g(y)(f \circ g)(y) - (g \circ f)(y)f(y), 0)$.

This concludes the result.
4. When does $\mathbb{H} \times \mathbb{H}_{(\sigma_\infty, f), (\sigma_\infty, g)}$ satisfy $(xx^2)x = x(x^2x)$?

Lemma 2. If the algebra $A = \mathbb{H} \times \mathbb{H}_{(\sigma_\infty, f), (\sigma_\infty, g)} := (\mathbb{H} \times \mathbb{H}, \circ)$ satisfies $(xx^2)x = x(x^2x)$ then the equality

$$g \left(g(y) f(y) g(y) \right) f(y) = \overline{g(y) f(y) g(y)} f(y)$$

holds for all $y \in \mathbb{H}$.

Proof. For $y \in \mathbb{H}$ we put $(0, y) := Y$ and we have

$$Y \circ Y = (-\overline{g(y) f(y)}, 0)$$

$$\left(Y \circ Y \right) \circ Y = (-\overline{g(y) f(y)}, 0) \ast (0, g(y))$$
$$= (-\overline{f(y)g(y)}, 0) \ast (0, g(y))$$
$$= (0, -g(y)f(y)g(y))$$

$$Y \circ (Y \circ Y) = (0, f(y)) \ast (-\overline{g(y) f(y)}, 0)$$
$$= (0, f(y)) \ast (-\overline{f(y)g(y)}, 0)$$
$$= (0, -f(y)g(y)f(y))$$

$$\left(Y \circ (Y \circ Y) \right) \circ Y = \left(0, -\overline{f(y)g(y)f(y)} \right) \ast (0, g(y))$$
$$= \left(\overline{g(y)f(y)g(y)f(y)}, 0 \right)$$

$$Y \circ \left((Y \circ Y) \circ Y \right) = (0, f(y)) \ast (0, -g(y)\overline{f(y)g(y)})$$
$$= \left(\overline{g(y)f(y)g(y)f(y)}, 0 \right).$$

The result is obtained from the equality of the two terms above.

Note 1. Let us identify the three-dimensional sphere S^3 with the set of norm-one quaternions and let a, b, c, d be in S^3. The equality $x\overline{ac} \overline{d} = axb\overline{c}ax$ cannot hold in \mathbb{H} otherwise both continuous spherical functions $f, g : S^3 \rightarrow S^3$ given by $f(x) = x\overline{ac} \overline{d}$ and $g(x) = axb\overline{c}ax$ must coincide and, therefore, their homotopic degree $\partial f, \partial g$ [4, p. 1531] must be equal. But $\partial f = 0$, while $\partial g = 2$. We deduce that the equality $x\overline{ac} \overline{d} = axb\overline{c}ax$ cannot hold in \mathbb{H}. Recall that the degree of such a function f is $n - m$, where n is the number of x that appear in the polynomial expression of f and m the number of \overline{f}. To see this, we take into account that $\overline{d}, \overline{c}, \overline{ac} \overline{c} \in S^3$ and that S^3 is connected.
There are continuous mappings $\alpha, \beta : [0,1] \to S^3$ such that $\alpha(0) = \beta(0) = 1$ and $\alpha(1) = \overline{d}$, $\beta(1) = \overline{c} \overline{a} c$. Therefore, the mapping

$$H : S^3 \times [0,1] \to S^3 \quad (x,t) \mapsto H(x,t) = x\beta(t)\overline{c}a\overline{a}c\alpha(t)\overline{d}$$

becomes a homotopy from f to the mapping $x \mapsto 1$. Thus $\partial f = 0$. Recall also that $\partial (x \mapsto x^n) = n$ for any integer n. ∎

We are going to see that the homotopical degree is a very effective tool in the calculations. We will denote by $T_{a,b}$ the operator $L_a R_b$ for $a, b \in H$.

Proposition 2. If one of the two algebras $H \times H_{(I_H,f),(I_H,g)}$, $H \times H_{(\sigma_H,f),(\sigma_H,g)}$ satisfies $(x, x^2, x) = 0$ then f, g are proper isometries.

Proof. Taking into account [7, Theorem (Cayley) p. 215] it suffices to show that (f, g) cannot be of the form:

$(T_{a,b}, T_{c,d} \circ \sigma_H)$, $(T_{a,b} \circ \sigma_H, T_{c,d})$, $(T_{a,b} \circ \sigma_H, T_{c,d} \circ \sigma_H)$ where $a, b, c, d \in S^3$.

Indeed, the equality (3.3) gives:

$$\begin{cases}
y\overline{c}a\overline{d}y\overline{d} = ayb\overline{c}ay \quad \text{for all } y \in H & \text{if } (f, g) = (T_{a,b}, T_{c,d} \circ \sigma_H) \\
y\overline{d}a\overline{c}y\overline{c} = b\overline{a}c\overline{a}y \quad \text{for all } y \in H & \text{if } (f, g) = (T_{a,b} \circ \sigma_H, T_{c,d}) \\
y\overline{c}a\overline{d}y\overline{c} = a\overline{g}b\overline{c}ay \quad \text{for all } y \in H & \text{if } (f, g) = (T_{a,b} \circ \sigma_H, T_{c,d} \circ \sigma_H)
\end{cases}$$

This cannot hold by virtue of the homotopic degrees. This shows the property in algebra $H \times H_{(I_H,f),(I_H,g)}$ and it is the same for $H \times H_{(\sigma_H,f),(\sigma_H,g)}$. ∎

5. **When does $H \times H_{(I_H,T_{a,b}),(I_H,T_{c,d})}$ satisfy $(xx^2)x = x(x^2x)$?**

Note 2. There are other homotopic invariants for continuous functions $f : S^3 \to S^3$ namely the notion of **bidegree** finer than that of the degree. According to the notations in Note 1 the bidegree of f, denoted $\text{bideg}(f)$ is the pair $(n, -m)$ [2, p. 8]. We have:

$$\text{bideg}(fg) = \text{bideg}(f) + \text{bideg}(g).$$

We need the following preliminary results:

Lemma 3. Let $a, b, c, d \in S^3$ and let $A = H \times H_{(I_H,T_{a,b}),(I_H,T_{c,d})}$. If A satisfies $(xx^2)x = x(x^2x)$ for all elements in $\{0\} \times H$ then $a, c \in \{1, -1\}$ and there exists $\varepsilon \in \{1, -1\}$ such that $(c,d) = (\varepsilon a, \overline{c}b)$.

Proof. The equality (3.3) gives:

\[\overline{y} \cdot c \cdot ayd = \overline{b} \cdot \overline{y} \cdot \overline{x} \cdot ay \quad \text{for all } y \in \mathbb{H} \]

The equality (5.5) is replaced by the following one if we introduce the scalar \(|y|^2 = y \overline{y}:

\[\overline{y} \cdot c \cdot a(y \overline{y})cyd = \overline{b} \cdot \overline{y} \cdot a(y \overline{y}) \cdot \overline{c} \cdot ay \quad \text{for all } y \in \mathbb{H} \]

Multiplying on the left the two members of the equality (5.6) by \(y \cdot ay \cdot b\) we get:

\[y \cdot ay \cdot b \cdot \overline{y} \cdot c \cdot a(y \overline{y})cyd = |y|^4 y \cdot \overline{y} \cdot a(y \overline{y})cyd \quad \text{for all } y \in \mathbb{H} \]

The same equality with a new arrangement of parentheses is:

\[(y \cdot ay \cdot b)(y \cdot \overline{c} \cdot ay)(y \cdot cyd) = |y|^4 y \cdot \overline{c} \cdot ay \quad \text{for all } y \in \mathbb{H}. \]

Let

\[f(y) = \overline{y} \cdot ay \cdot b, \quad y \in S^3 \]
\[g(y) = y \cdot \overline{c} \cdot ay, \quad y \in S^3 \]
\[h(y) = y \cdot cyd, \quad y \in S^3. \]

The equality (5.7) restricted to \(S^3\) becomes \(f(y)g(y)h(y) = g(y)\). Passing to bidegree we get: \(\text{bideg}(f) = \text{bideg}(h) = (0,0)\). So \(a, c\) are scalars and there exists \(\varepsilon \in \{1, -1\}\) such that \(c = \varepsilon a\). The equality (5.5) then gives \(d = \overline{\varepsilon b}\).

Note also that

\[\mathbb{H} \times \mathbb{H}(I_{\mathbb{H}}, T_a, b), (I_{\mathbb{H}}, T_c, d) = \mathbb{H} \times \mathbb{H}(I_{\mathbb{H}}, T_a, b), (I_{\mathbb{H}}, T_c, \overline{a}) \]
\[= \mathbb{H} \times \mathbb{H}(I_{\mathbb{H}}, T_{-a}, -b), (I_{\mathbb{H}}, T_{-a}, \overline{-b}). \]

This allows to take \(a = c = 1\) and \(d = \overline{b}\).

Lemma 4. Let \(b\) be in \(S^3\) and let \(A_b = \mathbb{H} \times \mathbb{H}(I_{\mathbb{H}}, R_a, R_b) := (\mathbb{H} \times \mathbb{H}, \circ)\). If \(A_b\) satisfies \((xx^2)x = x(x^2x)\) then \(b = 1\) and \(A_b\) is isomorphic to \(\mathbb{O}\).

Proof. Let \(b + \overline{b} := \lambda \in \mathbb{R}\) and \((1, 1) := X\). We have:

\[X \circ X = (1, b) * (1, \overline{b}) = (1 - b^2, \lambda). \]
\[(X \circ X) \circ X = (1 - b^2, \lambda b) \ast (1, \tilde{b}) \]
\[= (1 - b^2 - \lambda b^2, \lambda b + \tilde{b}(1 - b^2)) \]
\[= (1 - (1 + \lambda)b^2, (\lambda - 1)b + \tilde{b}). \]

\[X \circ (X \circ X) = (1, b) \ast (1 - b^2, \lambda \tilde{b}) \]
\[= (1 - (1 + \lambda)b^2, b + (\lambda - 1)\tilde{b}). \]

\[X \circ (X \circ (X \circ X)) = (1, b) \ast (1 - (1 + \lambda)b^2, \lambda - 1 + \tilde{b}^2) \]
\[= (1 - (1 + \lambda)b^2 - (\lambda - 1 + b^2)b, b - (1 + \lambda)b + \lambda - 1 + \tilde{b}^2) \]
\[= (1 - (1 + \lambda)b^2 - (\lambda - 1 + b^2)b, 2b - 2). \]

\[\left(X \circ (X \circ X) \right) \circ X = (1 - (1 + \lambda)b^2, b^2 + \lambda - 1) \ast (1, \tilde{b}) \]
\[= (1 - (1 + \lambda)b^2 - b(b^2 + \lambda - 1), b^2 + \lambda - 1 + \tilde{b}(1 - (1 + \lambda)b^2)) \]
\[= (1 - (1 + \lambda)b^2 - b(b^2 + \lambda - 1), 2\tilde{b} - 2). \]

We have \(X \circ (X \circ X) \circ X = 2(0, \tilde{b} - b).\) It vanishes only if \(b\) is a scalar equal to \(\pm 1.\) Now the algebra \(A_{-1}\) contains a non-zero central idempotent \((1, 0)\) and

\[\left((i, 1) \circ (1, 0) \right) \circ (i, 1) - (i, 1) \circ \left((1, 0) \circ (i, 1) \right) \neq (0, 0). \]

Thereby \(A_{-1}\) cannot satisfy \((xx^2)x = x(x^2x)\). Otherwise \(A_{-1}\) would be flexible [9, Theorem 2.3] which is absurd. So if \(A_b\) satisfies \((xx^2)x = x(x^2x)\) then \(b \neq -1.\)

We can now state the following result:

Theorem 1. Let \(A = \mathbb{H} \times \mathbb{H}_{(I_\mathbb{H}, f), (I_\mathbb{H}, g)}\). The following four statements are equivalent:

1. \(A\) satisfies \((xx^2)x = x(x^2x)\).
2. \(f, g\) are proper and coincide with the identity mapping \(I_\mathbb{H}\).
3. \(A\) is flexible.
4. \(A\) is isomorphic to \(\mathbb{O}\).
Proof. The implication $(1) \Rightarrow (2)$ is a consequence of Proposition 2 and Lemmas 3, 4. The implications $(2) \Rightarrow (4)$, $(4) \Rightarrow (3)$, $(3) \Rightarrow (1)$ are clear.

6. When does $H \times H_{(\sigma, T_{a, b}), (\sigma, T_{c, d})}$ satisfy $(xx^2)x = x(x^2x)$?

We need the following preliminary results:

Lemma 5. Let a, b, c, d be in S^3 and assume that $A = H \times H_{(\sigma, T_{a, b}), (\sigma, T_{c, d})}$ satisfies $(xx^2)x = x(x^2x)$. Then $b, d, a^3, c^3 \in \{1, -1\}$ and there exists $\varepsilon \in \{1, -1\}$ such that $c = \varepsilon a$.

Proof. The equality (4.4) gives:

\begin{equation}
\bar{d}, \bar{y}, \bar{c}, ayb, \bar{d}, \bar{y}, \bar{x}a^2 ay = \bar{y}, \bar{c}, a^2 yb, \bar{d}, \bar{y}, \bar{c}, ayb.
\end{equation}

Multiplying on the left the two members of the equality (6.8) by b, y, \bar{a}^2, cy we get:

\begin{equation}
\bar{b}, \bar{y}, \bar{a}^2 cy(\bar{d}, \bar{y}, \bar{c}ayb)\bar{d}, \bar{y}, \bar{x}a^2 ay = |y|^4 \bar{d}, \bar{y}, \bar{c}, ayb \quad \text{for all} \quad y \in H.
\end{equation}

Let now

\begin{align*}
f(y) &= \bar{b}, \bar{y}, \bar{a}^2 cy, y \in S^3 \\
g(y) &= \bar{d}, \bar{y}, \bar{c}ayb, y \in S^3 \\
h(y) &= \bar{d}, \bar{y}, \bar{x}a^2 ay, y \in S^3.
\end{align*}

The equality (6.9) restricted to S^3 becomes $f(y)g(y)h(y) = g(y)$ for all $y \in H$. Passing to bidegree we get: $\text{bideg}(f) = \text{bideg}(h) = (0, 0)$ that is $\bar{a}^2 c$, $\bar{x}a \in \{1, -1\}$. So there exists $\varepsilon \in \{1, -1\}$ such that $\bar{x}a = \varepsilon \bar{a}^2 c \in \{1, -1\}$. Thus

\begin{align*}
\bar{x}a &= \varepsilon \bar{a}^2 c \\
&= \varepsilon \bar{a}^2.
\end{align*}

This gives, after simplifications: $\bar{x} = \varepsilon a$ and finally $c = \varepsilon a$. Through the equality $\bar{x}a = \varepsilon \bar{a}^2 c$ we get $c^3 = \varepsilon a^3 = (\varepsilon a)^3 \in \{1, -1\}$. The equality (6.8) becomes

\begin{equation}
\bar{d}, \bar{y}a^2 yb\bar{d} = \varepsilon b, \bar{d}, \bar{y}a^2 yb : y \in H.
\end{equation}
By introducing the scalar $|y|^2$ in both members of the equality (6.10) and multiplying on the right by y, we get

$$d.ya^2yb(y)y = |y|^2b.d.ya^2yb \overline{y}$$

and finally

$$(6.11) \quad (d.ya^2yb)(y\overline{d.y}) = \varepsilon|y|^2b(d.ya^2yb) : y \in \mathbb{H}.$$

Let now $(\varphi(y), \psi(y)) = (d.ya^2yb, y\overline{d.y})$, $y \in S^3$. The equality (6.11) restricted to S^3 becomes $\varphi(y)\psi(y) = \varepsilon b\varphi(y)$ for all $y \in S^3$. Passing to bidegree we get:

$bideg(\psi) = (0, 0)$. So d is a scalar. The equality (6.8) shows that $b = \varepsilon d$ is also a scalar. Thus

$$H \times H(\sigma_{H}, T_{a,b}), (\sigma_{H}, T_{c,d}) = H \times H(\sigma_{H}, T_{a,b}), (\sigma_{H}, T_{c, a, b}) = H \times H(\sigma_{H}, T_{a,b}), (\sigma_{H}, T_{c, -a, b}) = H \times H(\sigma_{H}, T_{a,b}), (\sigma_{H}, T_{c, -a, b}).$$

This allows to take $b = d = 1$, that is $A = H \times H(\sigma_{H}, L_{a}), (\sigma_{H}, L_{a'})$ where $a' = \pm a$.

Lemma 6. The algebra $B = H \times H(\sigma_{H}, L_{a}), (\sigma_{H}, L_{a'})$ does not satisfy $(xx^2)x = x(x^2x)$.

Proof. It is easily verified that B is not a flexible algebra and contains a non-zero central idempotent $(1, 0)$. It cannot satisfy $(xx^2)x = x(x^2x)$.

Lemma 7. If $a \in \{1, -1\}$ then the following affirmations are equivalent:

1. The algebra $A = H \times H(\sigma_{H}, L_{a}), (\sigma_{H}, L_{a'})$ satisfies $(xx^2)x = x(x^2x)$.
2. $c = a = -1$.
3. A is isomorphic to O^*.

Proof. Clearly (1) \Rightarrow (2) is an immediate consequence of Lemmas 5, 6.

(2) \Rightarrow (3) ? The involution $\sigma_{O} de O$ coincides in $H \times H$ with $(\sigma_{H}, -I_{H})$. So

$$A = H \times H(\sigma_{H}, -I_{H}), (\sigma_{H}, -I_{H}) = O_{\sigma_{O}, \sigma_{O}} = O^*.$$

The implication (3) \Rightarrow (1) is clear.

We need a series of computational preliminary results:

Lemma 8. If $a \neq \pm 1$ then the algebra $A = H \times H(\sigma_{H}, L_{a}), (\sigma_{H}, L_{a'})$ contains no non-zero central elements.
Proof. Let \((u, v)\) be a central element of algebra \(A := (\mathbb{H} \times \mathbb{H}, \circ)\) and let \(y \in \mathbb{H}\). We have:

\[(u, v) \circ (y, 0) = (y, 0) \circ (u, v) \iff (\overline{u} \overline{y}, avy) = (\overline{y} \overline{u}, \overline{a}v \overline{y}).\]

The latter equality, valid for all \(y\), shows that \(u\) is a scalar. For \(y = 1\) it gives \(v = 0\) taking into account that \(a \neq \pm 1\). On the other hand, the element \((1, 0) \in A\) is not central. So \((u, v) = (0, 0)\).

Lemma 9. If \(a^3 = -1 \neq a\) then the algebra \(A = \mathbb{H} \times \mathbb{H}(\sigma_{\mathbb{H}}, L_0),(\sigma_{\mathbb{H}}, L_\pi) := (\mathbb{H} \times \mathbb{H}, \circ)\) is flexible and isomorphic to \(\mathbb{P}\).

Proof. Note that the algebra \(A\) contain no central idempotent. Thus it cannot be isomorphic neither to \(\mathbb{O}\) nor to \(\mathbb{O}^*\). Let now \(u, v, y, z \in \mathbb{H}\) and let \(U = (u, v), Y = (y, z)\) we have:

\[U \circ Y = (\overline{u}, av) * (\overline{y}, \overline{a}z) = (\overline{u} \overline{y} - \overline{a}^2v, avy + \overline{a}z \overline{u}).\]

\[(U \circ Y) \circ U = \left(\overline{u} \overline{y} - \overline{a}^2v, avy + \overline{a}z \overline{u}\right) * (\overline{u}, \overline{a}v) = (yu - \overline{u} \overline{a}^2z, a^2vy + zu) * (\overline{u}, \overline{a}v) = \left(\left(yu - \overline{a}^2z\right)\overline{u} - \overline{a}v(a^2vy + zu), (a^2vy + zu)u + \overline{a}v(yu - \overline{a}^2z)\right) = \left(\left(yu + avaz\right)\overline{u} - \overline{a}v(a^2vy + zu), (a^2vy + zu)u + \overline{a}v(yu + vaza)\right) = \left(\left(|u|^2 + |v|^2\right)y, (|u|^2 + |v|^2)z\right) = |U|^2Y.\]

\[U \circ (Y \circ U) = (u, v) \circ (\overline{y} \overline{u} - \overline{a}^2z, zu + \overline{av} \overline{y}) = (\overline{u}, av) * \left(\overline{y} \overline{u} - \overline{a}^2z, \overline{a}zu + \overline{av} \overline{y}\right) = (\overline{u}, av) * (uy - z a^2v, zu + a^2vy) = \left(\overline{u}(uy - z a^2v) - zu + a^2vy, av, av. uy - z a^2v + (zu + a^2vy)u\right) = \left(\overline{u}(uy + z av) - (\overline{u} z + yav^2), av, av(\overline{u} \overline{u} - \overline{a}^2z) + (zu - avy)u\right) = \left(\left(|u|^2 + |v|^2\right)y, (|u|^2 + |v|^2)z\right) = (U \circ Y) \circ U.\]

So \(A\) is flexible and isomorphic to \(\mathbb{P}\).
Lemma 10. If $a \neq \pm 1$ and the algebra $A = \mathbb{H} \times \mathbb{H}(\sigma_{\mathbb{H}, L_a}, (\sigma_{\mathbb{H}, L_a})$ satisfies $(xx^2)x = x(x^2x)$ then $a^3 = -1$.

Proof. Assume that $a^3 = 1$ and note that the trace, $a + \bar{a}$, of a equals -1 and that $a^2 + a + 1 = 0$. Let $V = (1,1)$ we have:

\[
V \odot V = (1, a) \ast (1, \bar{a})
\]
\[
= (1 - a^2, a + \bar{a})
\]
\[
= (1 - a^2, -1).
\]

\[
(V \odot V) \odot V = (1 - \bar{a}^2, -a) \ast (1, \bar{a})
\]
\[
= (1 - \bar{a}^2 + a^2, -a + \bar{a} - 1)
\]
\[
= (-2a, 2a^2).
\]

\[
V \odot (V \odot V) = (1, a) \ast (1 - \bar{a}^2, -\bar{a})
\]
\[
= (1 - \bar{a}^2 + a^2, a - 1 - \bar{a})
\]
\[
= (-2a, 2a).
\]

\[
(V \odot (V \odot V)) \odot V = 2(-\bar{a}, a^2) \ast (1, \bar{a})
\]
\[
= 2(-\bar{a} - 1, a^2 - \bar{a}^2)
\]
\[
= 2(a, -1 - 2a).
\]

\[
V \odot ((V \odot V) \odot V) = 2(1, a) \ast (-\bar{a}, a)
\]
\[
= 2(-\bar{a} - 1, -a^2 + a)
\]
\[
= 2(a, 1 + 2a)
\]
\[
\neq 2(a, -1 - 2a).
\]

So $a^3 = -1$.

Corollary 1. Let a,b,c,d be in S^3 and let $A = \mathbb{H} \times \mathbb{H}(\sigma_{\mathbb{H}, T_a, b}, (\sigma_{\mathbb{H}, T_c, d})$. The following affirmations are equivalent:

(1) A satisfies $(xx^2)x = x(x^2x)$.

(2) b et d are scalars which can be chosen equal to 1. Moreover, either $a = c = -1$ or $a^3 = -1 \neq a = \bar{c}$.

(3) A is flexible.

(4) A is isomorphic to eithet \mathbb{O} or \mathbb{P}.

Proof. The implication $(1) \Rightarrow (2)$ is a consequence of Lemmas 5, 7, 9, 10. The implication $(2) \Rightarrow (4)$ is a consequence of Lemmas 7, 9, 10. The
implication $(4) \Rightarrow (3)$ is contained in ([6], [10, Theorem 2.7]). The implication $(3) \Rightarrow (1)$ is clear.

7. The main result

Proposition 3. Let A be an eight-dimensional absolute-valued algebra which contain a four-dimensional sub-algebra B and satisfies $(xx^2)x = x(x^2x)$. Then A is obtained from B by duplication. In addition, the subalgebra B is flexible and isomorphic to either \mathbb{H} or $\hat{\mathbb{H}}$. Concretely, there are three linear isometries $f, \varphi, \psi : \mathbb{H} \to \mathbb{H}$ with $f \in \{I_{\mathbb{H}}, \sigma_{\mathbb{H}}\}$ such that:

$$A = \mathbb{H} \times \mathbb{H}_{(f, \varphi), (f, \psi)} \quad \text{and} \quad B = \mathbb{H}_{f, f}.$$

Proof. Let $e \in B$ be a non-zero idempotent. Then algebra $A_{R_e^{-1}, L_e^{-1}}$ has unit element e and is isomorphic to \mathbb{O}. Moreover, B is both R_e and L_e invariant. So A is obtained from B par duplication [2, Theorem 6.4] and there are four linear isometries $f, f', \varphi, \psi : \mathbb{H} \to \mathbb{H}$ with $f(1) = f'(1) = 1$ such that $A = \mathbb{H} \times \mathbb{H}_{(f, \varphi), (f', \psi)}$ and $B = \mathbb{H}_{f, f}$. If, in addition, A satisfies $(xx^2)x = x(x^2x)$ then B is flexible and isomorphic to either \mathbb{H} or $\hat{\mathbb{H}}$. The Proposition 1 shows that $f = f' \in \{I_{\mathbb{H}}, \sigma_{\mathbb{H}}\}$.

Theorem 2. Let A be an 8-dimensional absolute-valued algebra satisfying $(xx^2)x = x(x^2x)$. Then the following four affirmations are equivalent:

1. A has a four-dimensional subalgebra,
2. A is third-power associative,
3. A is flexible,
4. A is isomorphic to either $\mathbb{O}, \hat{\mathbb{O}}$ or \mathbb{P}.

Proof. The implication $(1) \Rightarrow (3)$ follows from [2, Theorem 6.4], Propositions 2, 3, Theorem 1 and Corollary 1. The equivalences $(3) \iff (2) \iff (4)$ are contained in ([6], [10, Theorem 2.7]). The implication $(4) \Rightarrow (1)$ is clear.

It is shown in [5] that every third-power associative absolute-valued algebra whose norm comes from an inner product is finite-dimensional. It may be conjectured that every absolute-valued algebra whose norm comes from an inner product and satisfying both identities $(xx^2)x = x(x^2x), \ (x^2)^2x^2 = x^2(x^2)^2$ is finite-dimensional.
Acknowledgements. This paper has benefited from several remarks and suggestions by Professor Cándido Martín Gonzalez. The authors are very grateful to him.

References

Received: October 15, 2016; Published: December 31, 2016