A Remark on Certain Filtrations on the Inner Automorphism Groups of Central Division Algebras over Local Number Fields

Yoshitaka Uchimura and Shuji Yamagata

Division of Science
School of Science and Engineering
Tokyo Denki University
Hatoyama, Saitama, 350-0394 Japan

Copyright © 2016 Yoshitaka Uchimura and Shuji Yamagata. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let K be a finite extension of the p-adic number field \mathbb{Q}_p and A a central division algebra over K. We define a filtration $\{G_n\}$ of the inner automorphism group $\text{Inn}(A)$ of A by the action on the valuation ring of A in an analogous way to the ramification groups. We give a relation between $\{G_n\}$ and a filtration $\{\rho(U^n_A)\}$ of $\text{Inn}(A)$ which is induced by the filtration of the unit groups of A. We also give a modified filtration which gives the description of $\rho(U^n_A)$ by the action on A^*.

Mathematics Subject Classification: 16W60, 16K20, 11S15,

Keywords: division algebra, discrete valuation, inner automorphism, filtration

1 Introduction

Let \mathbb{Z} be the ring of rational integers. Let p be a prime number. Let K be a finite extension of the p-adic number field \mathbb{Q}_p. Let v_K be the normalized discrete valuation of K, \mathcal{O}_K the valuation ring of K, U_K the unit group of K and κ_K the residue field of \mathcal{O}_K. Let f be the residue degree of K/\mathbb{Q}_p.
Let A be a central division algebra of degree d^2 over K. A^* denotes the multiplicative group of A.

Through in this paper we assume $A \neq K$ i.e. $d \geq 2$.

For any $x \in A$, put $v_A(x) = v_K \circ Nrd_{A/K}(x)$ where $Nrd_{A/K}$ is the reduced norm of A/K. Then v_A is the normalized discrete valuation of A. Let $O_A = \{ x \in A | v_A(x) \geq 0 \}$ be the valuation ring of A, $m_A = \{ x \in A | v_A(x) > 0 \}$ the maximal ideal of A and $\kappa_A = O_A/m_A$ the residue field of O_A, so that κ_A ia a finite field. Let $U_A = \{ x \in A | v_A(x) = 0 \}$ be the unit group of O_A and $U^n_A = \{ x \in A | v_A(x-1) \geq n \}$ the n-th unit group of A for each integer $n \geq 1$.

We recall that there is a commutative subfield L of A which is unramified and of degree d over K and $(v_A(A^*) : v_A(L^*)) = (v_A(A^*) : v_A(K^*)) = d$ (cf. [3] Chap. XII, [4]). Here K^* (resp. L^*) denotes the multiplicative group of K (resp. L). Let O_L be the valuation ring of L, m_L the maximal ideal of O_L and κ_L the residue field of O_L, so that $O_A = O_L + m_A$, $U_A = U_L + m_A$, $\kappa_L = \kappa_A$ and $[\kappa_L : \kappa_K] = d$.

We write $\text{Inn}(A)$ the inner automorphism group of A. For each $a \in A^*$ we define the surjective group homomorphism $\rho : A^* \to \text{Inn}(A)$ by $a \mapsto \rho_a$, where $\rho_a(x) = axa^{-1}$ for any $x \in A$. The kernel of ρ is K^*. We note that $v_A(\rho_a(x)) = v_A(x)$ for any $x \in A$.

For a subset S of A^*, write $\rho(S) = \{ \rho_a | a \in S \}$.

Moreover by [5] Chap. I § 4 Prop. 5 , there are a prime element π_A of A and a prime element π_K of K such that:
(i) $\pi_A^d = \pi_K$,
(ii) $\{ 1, \pi_A, \cdots , \pi_A^{d-1} \}$ is a basis of A as a left L-space and generates O_A as a left O_L-module,
(iii) the inner automorphism $\rho_{\pi_A} : x \mapsto \pi_A x \pi_A^{-1}$ of A induces on L a generator of the Galois group of L/K.
Put $\varphi = \rho_{\pi_A}$. Here we note that $\varphi(\pi_A) = \pi_A$.

Let u be an element of U_L whose residue class mod m_L generates the residue extension κ_L/κ_K.

$\varphi^n(u) - u \in m_L$ i.e. $\varphi^n(u) - u \in m_A$ if and only if d divides n. Moreover, since the φ -invariants of κ_L are κ_K, for any $b \in O_A$(resp. $b \in U_A$) we have $b \in O_K + m_A$(resp. $b \in U_K + m_A$) if $v_A(\varphi(b) - b) \geq 1$.

As $\pi_A^d = \pi_K \in K$, $\rho_{\pi_A} = id_A$. Therefore we note $\text{Inn}(A) = \rho(A^*) = \rho(O_A - \{ 0 \})$.

In the following of this paper we use the notations above.
It is well known that every automorphism of A is an inner automorphism of A (the Skolem-Noether theorem). For each integer $n \geq 0$, we define normal subgroups G_n’s of $\text{Inn}(A) = \rho(A^*)$ by the action on O_A as the higher ramification groups of the local number fields:

Definition 1.1 $G_n = \{ \rho_a | a \in O_A - \{0\}, v_A(\rho_a(x) - x) \geq n + 1 \text{ for all } x \in O_A \}$.

We also take H_n as follows to be defined by the action on A^* (for the case of the ramification groups, for example cf. [2] Ch. II §9 Def. 9.3) :

Definition 1.2 $H_n = \{ \rho_a | a \in O_A - \{0\}, v_A(\rho_a(x)x^{-1} - 1) \geq n \text{ for all } x \in A^* \}$.

H_n’s are also normal subgroups of $\text{Inn}(A)$ (cf. [1] §1 the proof of Lemma 1).

We show a periodic relation between $\{G_n\}$ and $\{\rho(U^n_A)\}$ in th. 3.1. In fact, if d divides n, then $G_n = \rho(U^n_A)$ and $G_{n+j} = \rho(U^{n+j+1}_A)$ for $j = 1, 2, \cdots, d-1$.

In prop. 3.2 we also remark that $H_n = \rho(U^n_A)$ for $n \geq 1$. This means that H_n gives the description of $\rho(U^n_A)$ by the action on A^*. Lastly an example follows.

2 Preliminaries

The following criterion holds in the same way as [1] and [3].

Criterion. (i) (cf. [3] Chap. IV §1 Lemma 1) Let $a \in O_A - \{0\}$. Then $\rho_a \in G_n$ if and only if $v_A(\rho_a(u) - u) \geq n + 1$ and $v_A(\rho_a(\pi_A) - \pi_A) \geq n + 1$.

(ii) (cf. [1] §1 the proof of Lemma 1) Let $a \in O_A - \{0\}$. Then $\rho_a \in H_n$ if and only if $v_A(\rho_a(u)u^{-1} - 1) = v_A(\rho_a(u) - u) \geq n$ and $v_A(\rho_a(\pi_A)\pi_A^{-1} - 1) \geq n \text{ i.e. } v_A(\rho_a(\pi_A) - \pi_A) \geq n + 1$.

We remark that $G_n \subset H_n \subset G_{n-1} \subset H_{n-1}$ for each integer $n \geq 1$.

In this paper we will use the following elementary lemma.
Lemma 2.1 (i) a) For \(a \in O_A - \{0\} \), we have \(v_A(\rho_a(\pi_A) - \pi_A) = v_A(\varphi(a) - a) + 1 - v_A(a) \geq 1 \).

b) For \(a \in U_A \), we have \(v_A(\rho_a(\pi_A) - \pi_A) \geq 1 \).

Moreover, \(v_A(\rho_a(\pi_A) - \pi_A) \geq 2 \) if and only if \(a \in U_K + m_A \).

c) For \(a = 1 + bn_A(b \in O_A, n \geq 1) \), we have \(v_A(\rho_a(\pi_A) - \pi_A) = v_A(\varphi(b) - b) + n + 1 \geq n + 1 \).

Moreover, \(v_A(\rho_a(\pi_A) - \pi_A) \geq n + 2 \) if and only if \(b \in O_K + m_A \).

(ii) a) For \(a \in O_A - \{0\} \), we have \(v_A(\rho_a(u) - u) = v_A(au - ua) - v_A(a) \geq 0 \).

Moreover, \(v_A(\rho_a(u) - u) \geq 1 \) if and only if \(a \in (O_K - \{0\})U_A \).

b) For \(a \in U_A \), we have \(v_A(\rho_a(u) - u) \geq 1 \).

c) For \(a = 1 + b\pi_A^n(b \in O_A, n \geq 1) \), we have \(v_A(\rho_a(u) - u) = v_A(b\varphi^n(u) - ub) + n \geq n \).

If \(d \) does not divide \(n \) and \(b \in U_A \), then we have \(v_A(\rho_a(u) - u) = n \).

On the other hand, if either \(d \) divides \(n \) or \(b \in m_A \), then we have \(v_A(\rho_a(u) - u) \geq n + 1 \).

Proof. (i) a) \(v_A(\rho_a(\pi_A) - \pi_A) = v_A(\pi_Aa - a\pi_A) - v_A(a) = v_A(\varphi(1 + b\pi_A^n) - (1 + b\pi_A^n)) + v_A(\pi_A) \geq 1 \).

b) For \(a \in U_A \), we have \(v_A(\rho_a(\pi_A) - \pi_A) = v_A(\varphi(a) - a) + 1 \geq 1 \) from a) above. Moreover, \(v_A(\rho_a(\pi_A) - \pi_A) \geq 2 \) if and only if \(v_A(\varphi(a) - a) \geq 1 \) which is equivalent to \(a \in U_K + m_A \).

c) For \(a = 1 + b\pi_A^n(b \in O_A, n \geq 1) \), we have \(v_A(\rho_a(\pi_A) - \pi_A) = v_A((1 + b\pi_A^n)) + v_A(\pi_A) \geq n + 2 \) if and only if \(v_A(\varphi(b) - b) \geq 1 \) i.e. \(b \in O_K + m_A \).

(ii) a) \(v_A(\rho_a(u) - u) = v_A(aua^{-1} - u) = v_A(au - ua) - v_A(a) \geq 0 \).

Let \(a = b\pi_A^n \) with \(b \in U_A, 0 \leq n \in \mathbb{Z} \). Then we have \(v_A(\rho_a(u) - u) = v_A(b\pi_A^n) = v_A(b\pi_A^n u - ub\pi_A^n) \).

Therefore, \(v_A(\rho_a(u) - u) \geq 1 \) if and only if \(v_A(b\varphi^n(u) - ub) \geq 1 \). By reducing mod \(m_A \) and noting that \(\kappa_A = \kappa_L \) is commutative, \(v_A(\rho_a(u) - u) \geq 1 \) if and only if \(d \) divides \(n \) i.e. \(a \in (O_K - \{0\})U_A \).

b) This follows from a) above.

c) For \(a = 1 + b\pi_A^n(b \in O_A, n \geq 1) \), we have \(v_A(\rho_a(u) - u) = v_A((1 + b\pi_A^n)u - u) = v_A(b\pi_A^n u - ub\pi_A^n) \).

If \(d \) does not divide \(n \), then \(v_A(\varphi^n(u) - u) = 0 \). Therefore, for \(b \in U_A \), we have \(v_A(\rho_a(u) - u) = n \).

On the other hand, if \(d \) divides \(n \), then \(v_A(\varphi^n(u) - u) \geq 1 \). Therefore by reducing mod \(m_A \) as above, we have \(v_A(b\varphi^n(u) - ub) \geq 1 \), so that \(v_A(\rho_a(u) - u) \geq n + 1 \). Also if \(b \in m_A \), then \(v_A(\rho_a(u) - u) \geq n + 1 \).

From now on we consider relations of the filtrations \(\{G_n\}, \{H_n\} \) and \(\{\rho(U^n_A)\} \).
of $\text{Inn}(A)$.

Proposition 2.2 $G_0 = \rho(U_A)$.

Proof. From lemma 2.1, we have $\rho(U_A) \subset G_0$. On the other hand, let $a \in O_A - \{0\}$ such that $\rho_a \in G_0$. Then $v_A(\rho_a(u) - u) \geq 1$. Therefore $a \in (O_K - \{0\})U_A$ by lemma 2.1(ii) and then $\rho_a \in \rho(U_A)$ and $G_0 \subset \rho(U_A)$. Hence $G_0 = \rho(U_A)$.

Proposition 2.3 $H_1 = \rho(U^1_A)$ and $H_0 = \rho(A^*)$.

Proof. We have $\rho(U^1_A) \subset H_1$ by lemma 2.1. On the other hand, let $a \in O_A - \{0\}$ such that $\rho_a \in H_1$. By lemma 2.1(ii), $a \in (O_K - \{0\})U_A$, so that we can write $a = b\pi_K^n$ with $b \in U_A$, $0 \leq n \in \mathbb{Z}$. As $\rho_a = \rho_b\rho_{\pi_K^n} = \rho_b$, we may assume $a = b \in U_A$. As $\rho_a \in H_1$, $v_A(\rho_a(\pi_A) - \pi_A) = v_A(\rho_a(\pi_A)\pi_A^{-1} - 1) + v_A(\pi_A) \geq 2$. By lemma 2.1(i) $a \in U_K + m_A$, so that we can write $a = w + g\pi_A$ with $w \in U_K$ and $g \in O_A$. Put $a' = 1 + w^{-1}g\pi_A \in U^1_A$. As $a = wa'$, we have $\rho_a = \rho_{wa'} = \rho_w\rho_a' = \rho_a'$. Thus $H_1 \subset \rho(U^1_A)$. Hence $H_1 = \rho(U^1_A)$.

Finally, lemma 2.1 shows $\rho(A^*) = \rho(O_A - \{0\}) = H_0$.

Proposition 2.4 For each integer $n \geq 1$, $\rho(U^n_A)$ is a subgroup of G_{n-1} and H_n.

Moreover $\rho(U^n_A)$ is a subgroup of G_n if and only if d divides n.

Particularly $G_n \subseteq G_{n-1}$ if d does not divide n.

Proof. Let $n \geq 1$ be an integer and $a = 1 + b\pi_A^n, (b \in O_A)$.
We have $v_A(\rho_a(\pi_A) - \pi_A) = v_A(\rho_a(\pi_A)\pi_A^{-1} - 1) + 1 \geq n + 1$ and $v_A(\rho_a(u) - u) = v_A(\rho_a(u)u^{-1} - 1) \geq n$ by lemma 2.1. Hence $\rho_a \in G_{n-1}$.

Suppose that $\rho_a \in G_n$, so that $v_A(\rho_a(u) - u) \geq n + 1$.
By lemma 2.1(ii), this means that either d divides n or $a \in U_A^{n+1}$. Therefore $\rho(U^n_A) \not\subset G_n$ if d does not divide n.

Now on the other hand we assume that d divides n. From lemma 2.1(ii) we have $v_A(\rho_a(u) - u) \geq n + 1$.
We also have $v_A(\rho_a(\pi_A) - \pi_A) \geq n + 1$ by lemma 2.1(i).
Therefore we get $\rho_a \in G_n$ and $\rho(U^n_A) \subset G_n$.
Hence $\rho(U^n_A) \subset G_n$ if and only if d divides n.

Proposition 2.5 Suppose d does not divide n, then $\rho(U_A^n) \cap G_n = \rho(U_A^{n+1})$.

Proof. Let $a = 1 + b \pi_A^n (b \in O_A)$. Suppose $\rho_a \in G_n$. Then by lemma 2.1(ii),
$v_A((b \varphi^n(u) - ub)\pi_A^n) \geq n + 1$. As $v_A(\varphi^n(u) - u) = 0$, $v_A(b) \geq 1$ and $a \in U_A^{n+1}$.
Thus we have $\rho(U_A^n) \cap G_n \subset \rho(U_A^{n+1})$.
On the other hand we have $\rho(U_A^n) \cap G_n \supset \rho(U_A^{n+1})$ by prop. 2.4.
Hence we get $\rho(U_A^n) \cap G_n = \rho(U_A^{n+1})$.

Proposition 2.6 Suppose d divides n, then $\rho(U_A) \cap G_j = \rho(U_A^{j+1})$ for $j = 1, 2, \cdots, d - 1$, therefore $G_j = \rho(U_A^{j+1})$ for $j = 1, 2, \cdots, d - 1$.

Proof. We first prove the assertion for the case of $j = 1$.
We take $a \in U_A$. Suppose $\rho_a \in G_1$. Then $v_A(\rho_a(\pi_A) - \pi_A) \geq 2$.
By lemma 2.1(i) we have $a \in U_K + m_A$. In the same way as in the proof of prop.
2.3 we can show that there are some $w \in U_K$ and $a' \in U_A^j$ such that $a = wa'$.
Therefore $\rho_a = \rho_a'$. Hence by prop. 2.5, we have $\rho_a \in \rho(U_A) \cap G_1 = \rho(U_A^2)$ and
$\rho(U_A) \cap G_1 \subset \rho(U_A^2)$. On the other hand, $\rho(U_A) \cap G_1 \supset \rho(U_A^2)$ by prop. 2.4. Thus we get $\rho(U_A) \cap G_1 = \rho(U_A^2)$.
Suppose $d \geq 3$, then $\rho(U_A) \cap G_2 = \rho(U_A) \cap (G_1 \cap G_2) = (\rho(U_A) \cap G_1) \cap G_2$
$= \rho(U_A^2) \cap G_2$. As d does not divide 2, by prop. 2.5, $\rho(U_A^2) \cap G_2 = \rho(U_A^3)$. Thus if $d \geq 3$, $\rho(U_A) \cap G_2 = \rho(U_A^3)$
By repeating the same argument, we get $\rho(U_A) \cap G_j = \rho(U_A^{j+1})$ for $j = 1, 2, \cdots, d - 1$. As $\rho(U_A) = G_0 \supset G_j$ by prop. 2.2, the last statement follows from above.

Proposition 2.7 Let n be an integer with $n \geq 1$. Suppose d divides n, then
$\rho(U_A^n) \cap G_{n+j} = \rho(U_A^{n+j+1})$ for $j = 1, 2, \cdots, d - 1$.

Proof. We first prove the assertion for the case $j = 1$.
Let $a = 1 + b \pi_A^n (b \in O_A)$. Suppose that $\rho_a \in G_{n+1}$. Then we have
$v_A(\rho_a(\pi_A) - \pi_A) \geq n + 2$. By lemma 2.1(i), this implies that $b \in O_K + m_A$.
Therefore we can write $b = c + g \pi_A$ with $c \in O_K$ and $g \in O_A$, so that
$a = 1 + c \pi_A^n + g \pi_A^{n+1}$. Write $n = dr$ with $1 \leq r \in \mathbb{Z}$. $1 + c \pi_A^n = 1 + c \pi_A$ has
the inverse in U_K^n. Calling $w = 1 + c \pi_A^n \in U_K$ and $a' = 1 + w^{-1}g \pi_A^{n+1} \in U_A^{n+1}$,
we have $a = wa'$. Consequently $\rho_a = \rho_w \rho_a' = \rho_a' \in \rho(U_A^{n+1})$.
By assumption, we have $\rho_a \in G_{n+1} \cap \rho(U_A^{n+1})$. Since d does not divide $n + 1$,
$\rho_a \in \rho(U_A^{n+2}) = \rho(U_A^{n+1}) \cap G_{n+1}$ by prop. 2.5.
Hence \(\rho(U_A^n) \cap G_{n+1} \subset \rho(U_A^{n+2}) \).

On the other hand we have \(\rho(U_A^n) \cap G_{n+1} \supset \rho(U_A^{n+2}) \) by prop. 2.4.

Therefore we have shown \(\rho(U_A^n) \cap G_{n+1} = \rho(U_A^{n+2}) \).

Now suppose \(d \geq 3 \) and we will show the assertion for the case \(j = 2 \) similarly as the proof of prop. 2.6. In fact, by assumption, we have \(\rho(U_{A}^{n}) \cap G_{n+2} = \rho(U_{A}^{n}) \cap (G_{n+1} \cap G_{n+2}) = (\rho(U_{A}^{n}) \cap G_{n+1}) \cap G_{n+2} = \rho(U_{A}^{n+2}) \cap G_{n+2} \). As \(d \) does not divide \(n+2 \), \(\rho(U_{A}^{n+2}) \cap G_{n+2} = \rho(U_{A}^{n+3}) \) by prop. 2.5. This implies \(\rho(U_A^n) \cap G_{n+2} = \rho(U_A^{n+3}) \) if \(d \geq 3 \).

Finally, by repeating the same argument, we get our conclusion that \(\rho(U_A^n) \cap G_{n+j} = \rho(U_A^{n+j+1}) \) for \(j = 1, 2, \cdots, d-1 \).

As the kernel of \(\rho \) is \(K^* \), we have the isomorphisms

\[
\rho(U_A) \simeq U_A / U_A \cap K^*, \rho(U_A^n) \simeq U_A^n / U_A^n \cap K^* etc.
\]

We also have the isomorphism \(A^* / U_A \simeq v_A(A^*) = Z \) induced by the valuation \(v_A \). Accordingly lemma 2.8 below follows applying the group isomorphism theorem.

Lemma 2.8 (i) \(\rho(A^*) / \rho(U_A) \simeq Z / dZ \).

(ii) \(\rho(U_A) / \rho(U_A^n) \simeq \kappa_A^* / \kappa_K^* \).

(iii) For each integer \(n \geq 1 \), we have

\[
\rho(U_A^n) / \rho(U_A^{n+1}) \simeq \begin{cases}
\kappa_{A+}, \text{ (} d \text{ does not divide } n \text{)} \\
\kappa_{A+} / \kappa_{K+}, \text{ (} d \text{ divides } n \text{)}
\end{cases}
\]

Here we mean by \(\kappa_{A+} \) (resp. \(\kappa_{K+} \)) the additive groups \(\kappa_A \) (resp. \(\kappa_K \)).

3 Main Results

Theorem 3.1 The \(G_n \)'s form a descending sequence \(\{ G_n \} \) of normal subgroups of \(Int(A) \) such that:

\[
G_0(= \rho(U_A)) \supseteq G_1(= \rho(U_A^2)) \supseteq G_2(= \rho(U_A^3)) \supseteq \cdots \supseteq G_{d-1} = G_d(= \rho(U_A^d)) \supseteq G_{d+1}(= \rho(U_A^{d+2})) \supseteq G_{d+2}(= \rho(U_A^{d+3})) \supseteq \cdots \supseteq G_{2d-1} = G_{2d}(= \rho(U_A^{2d})) \supseteq G_{rd+1}(= \rho(U_A^{rd+2})) \supseteq \cdots \supseteq G_{rd+1}(= \rho(U_A^{rd+j+1})) \supseteq \cdots \supseteq G_{rd+(d-1)} = G_{(r+1)d}(= \rho(U_A^{(r+1)d+1})) \supseteq G_{(r+1)d+1}(= \rho(U_A^{(r+1)d+2})) \supseteq \cdots .
\]

Moreover, for each integer \(r \geq 0 \), we have :

\[
\left\{
\begin{array}{ll}
(G_0 : G_1) &= p^{d_{rl}} p^{a-1} \\
(G_{rd+j} : G_{rd+j+1}) &= p^{d_{rl}} \quad (j = 1, 2, \cdots, d-2), \\
(G_{rd+(d-1)} : G_{(r+1)d}) &= p^{d_{rl}}, \\
(G_{(r+1)d} : G_{(r+1)d+1}) &= p^{d_{rl}}(2d-1),
\end{array}
\right.
\]
Proof. By props. 2.2, 2.4 and 2.6, we have $G_0 = \rho(U_A) \supsetneq G_1 = \rho(U_A^2) \supsetneq G_2 = \rho(U_A^3) \supsetneq \cdots \supsetneq G_j = \rho(U_A^{j+1}) \supsetneq \cdots \supsetneq G_{d-1} = \rho(U_A^d)$.

By props. 2.4 and 2.6, we have $G_{d-1} = \rho(U_A^d) \subsetneq G_d \subsetneq G_{d-1}$, which implies $G_{d-1} = G_d = \rho(U_A^d)$.

Substituting d for n in prop. 2.7, we have $\rho(U_{A}^{d+j+1}) = \rho(U_{A}^{d}) \cap G_{d+j} = G_d \cap G_{d+j} = G_{d+j}$ for $j = 1, 2, \cdots, d - 1$.

Similarly as above we have $G_{d+1} = \rho(U_{A}^{d+2}) \supsetneq G_{d+2} = \rho(U_{A}^{d+3}) \supsetneq \cdots \supsetneq G_{2d-1} = \rho(U_{A}^{2d})$. Also we have $G_{2d-1} = \rho(U_{A}^{2d}) \subsetneq G_{2d} \subsetneq G_{2d-1}$, so that $G_{2d-1} = G_{2d} = \rho(U_{A}^{2d})$.

By repeating the same argument, we get the required properties of the descending sequence $\{G_n\}$.

Finally, the assertion for group indexes follow from lemma 2.8.

Here we note $(G_0 : G_1) = (\rho(U_A) : \rho(U_A^1)) \cdot (\rho(U_A^1) : \rho(U_A^2))$ and $(G_{(r+1)d} : G_{(r+1)d+1}) = (\rho(U_A^{(r+1)d}) : \rho(U_A^{(r+1)d+1}) \cdot (\rho(U_A^{(r+1)d+1}) : \rho(U_A^{(r+1)d+2}))$.

\textbf{Proposition 3.2} \textit{Let n be an integer with $n \geq 1$. Then $H_n = \rho(U_{A}^n)$. Moreover, for each integer $n \geq 1$, we have:}

$(H_0 : H_1) = d\frac{d^d - 1}{d - 1}$,

$(H_n : H_{n+1}) = p^{f_d}$ if d does not divide n,

$(H_n : H_{n+1}) = p^{f(d-1)}$ if d divides n.

Proof. We first prove the assertion that, for each integer $n \geq 1$, $\rho(U_{A}^n) \cap H_{n+1} = \rho(U_{A}^{n+1})$.

If d does not divide n, we have $\rho(U_{A}^n) \cap H_{n+1} \subset \rho(U_{A}^{n}) \cap G_n = \rho(U_{A}^{n+1})$ by prop. 2.5. Now we assume that d divides n. Let $a = 1 + b\pi_{n}(b \in O_{A})$. Suppose that $\rho_{a} \in H_{n+1}$. Then $v_{A}(\rho_{a}(\pi_{A}) - \pi_{A}) \geq n + 2$. Therefore $b \in O_{A} + m_{A}$ by lemma 2.1(i). As in the proof of prop. 2.7, we have $\rho_{a} \in \rho(U_{A}^{n+1})$, so that $\rho(U_{A}^n) \cap H_{n+1} \subset \rho(U_{A}^{n+1})$.

On the other hand we have, for each integer $n \geq 1$, $\rho(U_{A}^n) \cap H_{n+1} \supset \rho(U_{A}^{n+1})$ by prop. 2.4. Thus we have $\rho(U_{A}^n) \cap H_{n+1} = \rho(U_{A}^{n+1})$.

From now on we prove the proposition.

From prop. 2.3, we have $\rho(U_{A}^1) = H_1$ i.e. the assertion for $n = 1$.

Suppose that $H_n = \rho(U_{A}^n)$. By the assertion above we have $\rho(U_{A}^{n+1}) = \rho(U_{A}^{n}) \cap H_{n+1} = H_n \cap H_{n+1} = H_{n+1}$, and therefore we have $H_{n+1} = \rho(U_{A}^{n+1})$.

By induction we get our conclusion.

Finally, the assertion for group indexes follows from lemma 2.8.
Example 3.3 For $K = \mathbb{Q}_p$ and $d = 2$, we have:

for each integer $n \geq 1$, we have $(G_0 : G_1) = p^2(p+1), (G_{2n-1} : G_{2n}) = 1, (G_{2n} : G_{2n+1}) = p^3, (H_0 : H_1) = 2(p+1), (H_{2n-1} : H_{2n}) = p^2$ and $(H_{2n} : H_{2n+1}) = p$.

\[
\begin{array}{cccc}
G_0 & \supsetneq & G_1 & = \quad G_2 & \supsetneq & G_3 & = \quad G_4 & \supsetneq & G_5 \\
\rho(A^*) & \supsetneq & \rho(U_{A}) & \supsetneq & \rho(U_{A}^1) & \supsetneq & \rho(U_{A}^2) & \supsetneq & \rho(U_{A}^3) & \supsetneq & \rho(U_{A}^4) & \supsetneq & \rho(U_{A}^5) \\
H_0 & \supsetneq & H_1 & \supsetneq & H_2 & \supsetneq & H_3 & \supsetneq & H_4 & \supsetneq & H_5
\end{array}
\]

References

Received: January 28, 2016; Published: March 18, 2016