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Abstract

We show that, for any similar algebraic structures Ai, i ∈ I, the
ultraproduct of the ∧-semilattices of all congruences of Ai, i ∈ I is
embeddable into the ∧-semilattice of all congruences of the ultraproduct
of Ai, i ∈ I. We apply this result for factor algebras and for ultrapowers.
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1 Introduction

Let I be a nonempty set and D an ultrafilter over I, that is, D is a subset of
the power set P (I) of I with the following properties:

(1) I ∈ D but ∅ /∈ D;

(2) A ∩B ∈ D for any A,B ∈ D;

(3) If A ∈ D and C ⊆ I with A ⊆ C then C ∈ D;

(4) For each A ⊆ I, A ∈ D or I \ A ∈ D.

1This work was supported by the National Research, Development and Innovation Office
NKFIH, 115288.
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We note that (1) and (2) together imply that, for each A ⊆ I, exactly one
of the sets A , I \A belongs to D. Moreover, by Corollary 3.13 of Chapter IV
of [1], condition (4) can be replaced by the following condition: (4∗) For any
A,B ⊆ I, the assumption A ∪B ∈ D implies A ∈ D or B ∈ D.

Let Ai = (Ai; Ω), i ∈ I be arbitrary similar algebraic structures and σi
be a congruence on Ai, i ∈ I. Let Π(Ai|i ∈ I) denote the direct product of
Ai. Let Con(Ai) denote the ∧-semilattice of all congruences of Ai, i ∈ I.
Let σ ∈ Π(Con(Ai)|i ∈ I) be an element for which σ(i) = σi, i ∈ I. Let
Π(σ(i)|i ∈ I) denote the relation on the direct product Π(Ai|i ∈ I) defined by
(a, b) ∈ Π(σ(i)|i ∈ I) if and only if {i ∈ I|(a(i), b(i)) ∈ σ(i)} ∈ D. By the dual
of Lemma 3 of §8 of [2], it is easy to see that Π(σ(i)|i ∈ I) is a congruence
on Π(Ai|i ∈ I). Recall that this congruence is the ultraproduct congruence
(denoted by D∗) on Π(Ai|i ∈ I) if σ(i) is the identity relation on Ai for all
i ∈ I. It is evident that D∗ ⊆ Π(σ(i)|i ∈ I) for arbitrary congruences σ(i)
on Ai, i ∈ I. Then we can consider the congruence Π(σ(i)|i ∈ I)/D∗ on the
ultraproduct ΠD(Ai|i ∈ I) = Π(Ai|i ∈ I)/D∗ (see Definition 6.13 and Lemma
6.14 of Chapter II of [1]). This congruence will be denoted by ΠD(σ(i)|i ∈ I).
In this paper we examine congruences ΠD(σ(i)|i ∈ I) on the ultraproduct
ΠD(Ai|i ∈ I). Let the ultraproduct congruence on Π(Con(Ai)|i ∈ I) de-
noted by also D∗. In Section 2, we show that Φ : σ/D∗ 7→ ΠD(σ(i)|i ∈ I) is
an embedding of the ∧-semilattice ΠD(Con(Ai)|i ∈ I) into the ∧-semilattice
Con(ΠD(Ai|i ∈ I), where σ/D∗ denotes the ultraproduct congruence class
on the direct product Π(Con(Ai)|i ∈ I) containing σ = (σ(i))i∈I . In Sec-
tion 3, we prove that the factor algebra ΠD(Ai|i ∈ I)/ΠD(σ(i)|i ∈ I) is iso-
morphic to the ultraproduct ΠD(Ai/σ(i)|i ∈ I). In Section 4, we apply our
results for the ultrapower ΠD(A|i ∈ I) of an algebraic structure A. Since
A can be embedded into its ultrapower ΠD(A|i ∈ I) then, for an arbitrary
family {σ(i)|i ∈ I} of congruences on A, we can consider the restriction
ΠD(σ(i)|i ∈ I)|A of the congruence ΠD(σ(i)|i ∈ I) on ΠD(A|i ∈ I) to A.
We show that if {σ(i)|i ∈ I} is an arbitrary family of congruences on A
and D = {Kj|j ∈ J} then ∪j∈J(∩k∈Kj

σk) is a congruence on A such that
ΠD(σ(i)|i ∈ I)|A = ∪j∈J(∩k∈Kj

σk) = ∨j∈J(∧k∈Kj
σ(k)).

2 An embedding theorem

Theorem 1 Let I be a non-empty set and D an ultrafilter over I. Then,
for arbitrary similar algebraic structures Ai, i ∈ I, the mapping

Φ : σ/D∗ 7→ ΠD(σ(i)|i ∈ I)

is a ∧-semilattice embedding of ΠD(Con(Ai)|i ∈ I) into Con(ΠD(Ai|i ∈ I)).
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Proof. Let α = (α(i))i∈I and β = (β(i))i∈I be arbitrary elements of the direct
product Π(Con(Ai)|i ∈ I). First we show that α/D∗ = β/D∗ if and only if
ΠD(α(i)|i ∈ I) = ΠD(β(i)|i ∈ I). By the Correspondence Theorem (Theorem
6.20 of Chapter II of [1]), it is sufficient to show that α/D∗ = β/D∗ if and only
if Π(α(i)|i ∈ I) = Π(β(i)|i ∈ I).

Assume α/D∗ = β/D∗. Then A = {i ∈ I : α(i) = β(i)} ∈ D. If (a, b) ∈
Π(α(i)|i ∈ I) for some elements a = (a(i))i∈I and b = (b(i))i∈I of Π(Ai|i ∈ I)
then B = {i ∈ I : (a(i), b(i)) ∈ α(i)} ∈ D and so, for every i ∈ A ∩ B ∈ D,
(a(i), b(i)) ∈ β(i) from which it follows that {i ∈ I : (a(i), b(i)) ∈ β(i)} ∈ D.
Thus (a, b) ∈ Π(β(i)|i ∈ I). Hence Π(α(i)|i ∈ I) ⊆ Π(β(i)|i ∈ I). We can
prove Π(β(i)|i ∈ I) ⊆ Π(α(i)|i ∈ I) in a similar way. Thus Π(α(i)|i ∈ I) =
Π(β(i)|i ∈ I).

To prove the converse, assume Π(α(i)|i ∈ I) = Π(β(i)|i ∈ I). We show
that K = {i ∈ I|α(i) = β(i)} ∈ D. Assume, in an indirect way, that K /∈ D.
Then I \K ∈ D.

First assume R = {i ∈ I : α(i) ⊂ β(i)} ∈ D. Then (I \R) /∈ D. For i ∈ R,
let (ai, bi) be an element of Ai×Ai such that (ai, bi) ∈ β(i) and (ai, bi) /∈ α(i).
For the indexes i ∈ I \R, let (ai, bi) ∈ Ai×Ai be arbitrary. Let a and b be the
elements of Π(Ai|i ∈ I) for which a(i) = ai and b(i) = bi. As (a(i), b(i)) ∈ β(i)
for every i ∈ R ∈ D, we have {i ∈ I : (a(i), b(i)) ∈ β(i)} ∈ D and so (a, b) ∈
Π(β(i)|i ∈ I). We show that (a, b) /∈ Π(α(i)|i ∈ I). Assume, in an indirect
way, that (a, b) ∈ Π(α(i)|i ∈ I). Then V = {i ∈ I : (a(i), b(i)) ∈ α(i)} ∈ D.
As V ⊆ I \ R, we have I \ R ∈ D and so R /∈ D which is a contradiction.
Hence (a, b) /∈ Π(α(i)|i ∈ I). This implies Π(α(i)|i ∈ I) 6= Πβ(i)|i ∈ I) which
is a contradiction.

Next consider the case when R = {i ∈ I : α(i) ⊂ β(i)} /∈ D. Then
{i ∈ I : α(i) ⊆ β(i)} = K ∪ R /∈ D. For every i ∈ I \ (K ∪ R) ∈ D, there
are elements ai, bi of Ai such that (ai, bi) ∈ α(i), (ai, bi) /∈ β(i). For an
index i ∈ K ∪ R, let the elements ai, bi ∈ Ai be arbitrary. Let a and b be
the elements of Π(Ai|i ∈ I) for which a(i) = ai and b(i) = bi. It is clear that
(a, b) ∈ Π(α(i)|i ∈ I). We show that (a, b) /∈ ΠD(β(i)|i ∈ I). Assume, in an
indirect way, that (a, b) ∈ Π(β(i)|i ∈ I). Then {i ∈ I : (a(i), b(i)) ∈ β(i)} ∈ D.
As {i ∈ I : (a(i), b(i)) ∈ β(i)} ⊆ K ∪ R, we have K ∪ R ∈ D which is a
contradiction. Thus (a, b) /∈ Π(β(i)|i ∈ I). Hence Π(α(i)|i ∈ I) 6= Π(β(i)|i ∈
I) which is a contradiction. We got a contradiction in both cases. Thus
K = {i ∈ I : α(i) = β(i)} ∈ D. Consequently α/D∗ = β/D∗.

Thus
Φ : σ/D∗ 7→ ΠD(σ(i)|i ∈ I)

is a well defined injective mapping. We show that Φ is a ∧-homomorphism. For
arbitrary a, b ∈ Π(Ai|i ∈ I), let Iα∧β = {i ∈ I : (a(i), b(i)) ∈ (α∧β)(i) = α(i)∧
β(i)}, Iα = {i ∈ I : (a(i), b(i)) ∈ α(i)} and Iβ = {i ∈ I : (a(i), b(i)) ∈ β(i)}.
It is easy to see that Iα∧β = Iα ∩ Iβ. As D is an ultrafilter, Iα ∩ Iβ ∈ D
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if and only if Iα ∈ D and Iβ ∈ D. From the above it follows that (a, b) ∈
Π((α ∧ β)(i)|i ∈ I) if and only if (a, b) ∈ Π(α(i)|i ∈ I) ∧ Π(β(i)|i ∈ I). Hence
Π((α ∧ β)(i)|i ∈ I) = Π(α(i)|i ∈ I) ∧ Π(β(i)|i ∈ I). By the Correspondence
Theorem (Theorem 6.20 of Chapter II of [1]), we have ΠD((α ∧ β)(i)|i ∈ I) =
ΠD(α(i)|i ∈ I) ∧ ΠD(β(i)|i ∈ I). Then

Φ(α/D∗ ∧ β/D∗) = Φ((α ∧ β)/D∗) = ΠD((α ∧ β)(i)|i ∈ I) =

= ΠD(α(i)|i ∈ I) ∧ ΠD(β(i)|i ∈ I) = Φ(α/D∗) ∧ Φ(β/D∗),

and so Φ is a ∧-homomorphism. Thus Φ is an embedding of the ∧-semilattice
ΠD(Con(Ai)|i ∈ I) into the ∧-semilattice Con(ΠD(Ai|i ∈ I)). u

3 An isomorphism theorem

Theorem 2 Let I be a non-empty set and D an ultrafilter over I. Then,
for arbitrary similar algebraic structures Ai, i ∈ I and an arbitrary congruence
σ(i) on Ai (i ∈ I), ΠD(Ai|i ∈ I)/ΠD(σ(i)|i ∈ I) ∼= ΠD(Ai/σ(i)|i ∈ I).

Proof. As ΠD(Ai|i ∈ I)/ΠD(σ(i)|i ∈ I) ∼= Π(Ai|i ∈ I)/Π(σ(i)|i ∈ I) by the
Second Isomorphic Theorem (Theorem 6.15 of Chapter II of [1]), it is sufficient
to show that Π(Ai|i ∈ I)/Π(σ(i)|i ∈ I) ∼= ΠD(Ai/σ(i)|i ∈ I). For an element
a = (a(i))i∈I of the direct product Π(Ai|i ∈ I), let ∆(a) = ([a(i)]σ(i))i∈I/D∗,
where [a(i)]σ(i) denotes the σ(i)-class of Ai containing a(i). It is obvious that
∆ : Π(Ai|i ∈ I) 7→ ΠD(Ai/σ(i)|i ∈ I) is a well defined surjective mapping. Let
aj = (aj(i))i∈I , (j = 1, . . . , n) be arbitrary elements of Π(Ai|i ∈ I). If ωn ∈ Ω
is an n-ary operation then

ωn(∆(a1), . . . ,∆(an)) = ωn(([a1(i)]σ(i))i∈I/D∗, . . . , ([an(i)]σ(i))i∈I/D∗) =

= ωn(([a1(i)]σ(i))i∈I , . . . , ([an(i)]σ(i))i∈I)/D∗ =

= (ωn([a1(i)]σ(i), . . . , [an(i)]σ(i)))i∈I/D∗ = ([ωn(a1(i), . . . , an(i))]σ(i))i∈I/D∗ =

= (([ωn(a1, . . . , an)(i)]σ(i))i∈I)/D∗ = ∆(ωn(a1, . . . , an)).

Thus ∆ is a homomorphism. For elements a = (a(i))i∈I and b = (b(i))i∈I of
Π(Ai|i ∈ I), ∆(a) = ∆(b) if and only if ([a(i)]σ(i))i∈I/D∗ = ([b(i)]σ(i))i∈I/D∗,
that is, {i ∈ I|[a(i)]σ(i) = [b(i)]σ(i)} ∈ D. This last condition is equivalent to
the condition that {i ∈ I|(a(i), b(i)) ∈ σ(i)} ∈ D, that is, (a, b) ∈ Π(σ(i)|i ∈
I). Thus the kernel of ∆ is Π(σ(i)|i ∈ I). Our assertion follows from the
Homomorphism Theorem (Theorem 6.12 of Chapter II of [1]). u
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4 Ultrapowers

Let A be an algebraic structure. If D is an ultrafilter over a non-empty set I, we
can consider the ultrapower of A modulo D as the ultraproduct ΠD(Ai|i ∈ I),
where Ai = A for all i ∈ I. For an arbitrary element a ∈ A, let ξ(a) denote the
D∗-class of the direct product Π(A|i ∈ I) which contains the constant function
with value a. It is known (Lemma 2.10 of Chapter V of [1]) that ξ : a 7→ ξ(a) is
an embedding (the natural embedding) of A into the ultrapower ΠD(A|i ∈ I).
Identify A and ξ(A). Let σ(i), i ∈ I be arbitrary congruences on A. Let
ΠD(σ(i)|i ∈ I)|A denote the restriction of the congruence ΠD(σ(i)|i ∈ I) to
A. It is clear that, for some a, b ∈ A, (a, b) ∈ ΠD(σ(i)|i ∈ I)|A if and only if
{i ∈ I|(a, b) ∈ σ(i)} ∈ D.

Theorem 3 Let I be a non-empty set and D = {Kj|j ∈ J} an ultrafilter
over I. Then, for an arbitrary family {σ(i)|i ∈ I} of congruences σ(i) on
an algebraic structure A, ∪j∈J(∩k∈Kj

σ(k)) is a congruence on A such that
ΠD(σ(i)|i ∈ I)|A = ∪j∈J(∩k∈Kj

σ(k)) = ∨j∈J(∧k∈Kj
σ(k)).

Proof. For a couple (a, b) of elements a and b of A ⊆ ΠD(A|i ∈ I), let
Ka,b = {i ∈ I|(a, b) ∈ σ(i)}. Assume (a, b) ∈ ΠD(σ(i)|i ∈ I) for some a, b ∈ A.
Then Ka,b ∈ D and so (a, b) ∈ ∩k∈Ka,b

σ(k) from which it follows that (a, b) ∈
∪j∈J(∩k∈Kj

σ(k)). Thus ΠD(σ(i)|i ∈ I)|A ⊆ ∪j∈J(∩k∈Kj
σ(k)).

Conversely, assume (a, b) ∈ ∪j∈J(∩k∈Kj
σ(k)) for some a, b ∈ A. Then

there is an index j ∈ J such that (a, b) ∈ (∩k∈Kj
σ(k)). Thus Kj ⊆ Ka,b

and so Ka,b ∈ D. Hence (a, b) ∈ ΠD(σ(i)|i ∈ I)|A. Thus ∪j∈J(∩k∈Kj
σ(k) ⊆

ΠD(σ(i)|i ∈ I)|A. Consequently ΠD(σ(i)|i ∈ I)|A = ∪j∈J(∩k∈Kj
σ(k)). Thus

∪j∈J(∩k∈Kj
σ(k)) is a congruence on A. It is obvious that ∪j∈J(∩k∈Kj

σ(k)) is
a common upper bound of the congruences σj = ∩k∈Kj

σ(k), j ∈ J . Moreover,
for every common upper bound β of σj, j ∈ J , we have ∪j∈J(∩k∈Kj

σ(k)) ⊆
β and so ∪j∈J(∩k∈Kj

σ(k)) = ∨j∈J(∧k∈Kj
σ(k)). Hence ΠD(σ(i)|i ∈ I)|A =

∪j∈J(∩k∈Kj
σ(k)) = ∨j∈J(∧k∈Kj

σ(k)). u
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