International Journal of Algebra, Vol. 10, 2016, no. 1, 13-17
HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/ija.2016.51170

On Congruences on Ultraproducts of Algebraic Structures ${ }^{1}$

A. Nagy
Department of Algebra, Mathematical Institute Budapest University of Technology and Economics
1521 Budapest, Pf. 91, Hungary

Copyright © 2015 A. Nagy. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We show that, for any similar algebraic structures $A_{i}, i \in I$, the ultraproduct of the \wedge-semilattices of all congruences of $A_{i}, i \in I$ is embeddable into the \wedge-semilattice of all congruences of the ultraproduct of $A_{i}, i \in I$. We apply this result for factor algebras and for ultrapowers.

Mathematics Subject Classification: 08A30, 03C20
Keywords: ultrafilter, ultraproduct, algebraic structures, congruences

1 Introduction

Let I be a nonempty set and \mathcal{D} an ultrafilter over I, that is, \mathcal{D} is a subset of the power set $P(I)$ of I with the following properties:
(1) $I \in \mathcal{D}$ but $\emptyset \notin \mathcal{D}$;
(2) $A \cap B \in \mathcal{D}$ for any $A, B \in \mathcal{D}$;
(3) If $A \in \mathcal{D}$ and $C \subseteq I$ with $A \subseteq C$ then $C \in \mathcal{D}$;
(4) For each $A \subseteq I, A \in \mathcal{D}$ or $I \backslash A \in \mathcal{D}$.

[^0]We note that (1) and (2) together imply that, for each $A \subseteq I$, exactly one of the sets $A, I \backslash A$ belongs to \mathcal{D}. Moreover, by Corollary 3.13 of Chapter IV of [1], condition (4) can be replaced by the following condition: (4*) For any $A, B \subseteq I$, the assumption $A \cup B \in \mathcal{D}$ implies $A \in \mathcal{D}$ or $B \in \mathcal{D}$.

Let $A_{i}=\left(A_{i} ; \Omega\right), i \in I$ be arbitrary similar algebraic structures and σ_{i} be a congruence on $A_{i}, i \in I$. Let $\Pi\left(A_{i} \mid i \in I\right)$ denote the direct product of A_{i}. Let $\operatorname{Con}\left(A_{i}\right)$ denote the \wedge-semilattice of all congruences of $A_{i}, i \in I$. Let $\sigma \in \Pi\left(\boldsymbol{\operatorname { C o n }}\left(A_{i}\right) \mid i \in I\right)$ be an element for which $\sigma(i)=\sigma_{i}, i \in I$. Let $\Pi(\sigma(i) \mid i \in I)$ denote the relation on the direct product $\Pi\left(A_{i} \mid i \in I\right)$ defined by $(a, b) \in \Pi(\sigma(i) \mid i \in I)$ if and only if $\{i \in I \mid(a(i), b(i)) \in \sigma(i)\} \in \mathcal{D}$. By the dual of Lemma 3 of $\S 8$ of [2], it is easy to see that $\Pi(\sigma(i) \mid i \in I)$ is a congruence on $\Pi\left(A_{i} \mid i \in I\right)$. Recall that this congruence is the ultraproduct congruence (denoted by \mathcal{D}^{*}) on $\Pi\left(A_{i} \mid i \in I\right)$ if $\sigma(i)$ is the identity relation on A_{i} for all $i \in I$. It is evident that $\mathcal{D}^{*} \subseteq \Pi(\sigma(i) \mid i \in I)$ for arbitrary congruences $\sigma(i)$ on $A_{i}, i \in I$. Then we can consider the congruence $\Pi(\sigma(i) \mid i \in I) / \mathcal{D}^{*}$ on the ultraproduct $\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)=\Pi\left(A_{i} \mid i \in I\right) / \mathcal{D}^{*}$ (see Definition 6.13 and Lemma 6.14 of Chapter II of [1]). This congruence will be denoted by $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$. In this paper we examine congruences $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ on the ultraproduct $\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)$. Let the ultraproduct congruence on $\Pi\left(\boldsymbol{\operatorname { C o n }}\left(A_{i}\right) \mid i \in I\right)$ denoted by also \mathcal{D}^{*}. In Section 2, we show that $\Phi: \sigma / \mathcal{D}^{*} \mapsto \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ is an embedding of the \wedge-semilattice $\Pi_{\mathcal{D}}\left(\mathbf{C o n}\left(A_{i}\right) \mid i \in I\right)$ into the \wedge-semilattice $\operatorname{Con}\left(\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)\right.$, where σ / \mathcal{D}^{*} denotes the ultraproduct congruence class on the direct product $\Pi\left(\mathbf{C o n}\left(A_{i}\right) \mid i \in I\right)$ containing $\sigma=(\sigma(i))_{i \in I}$. In Section 3, we prove that the factor algebra $\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right) / \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ is isomorphic to the ultraproduct $\Pi_{\mathcal{D}}\left(A_{i} / \sigma(i) \mid i \in I\right)$. In Section 4, we apply our results for the ultrapower $\Pi_{\mathcal{D}}(A \mid i \in I)$ of an algebraic structure A. Since A can be embedded into its ultrapower $\Pi_{\mathcal{D}}(A \mid i \in I)$ then, for an arbitrary family $\{\sigma(i) \mid i \in I\}$ of congruences on A, we can consider the restriction $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \mid A$ of the congruence $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ on $\Pi_{\mathcal{D}}(A \mid i \in I)$ to A. We show that if $\{\sigma(i) \mid i \in I\}$ is an arbitrary family of congruences on A and $\mathcal{D}=\left\{K_{j} \mid j \in J\right\}$ then $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma_{k}\right)$ is a congruence on A such that $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \mid A=\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma_{k}\right)=\vee_{j \in J}\left(\wedge_{k \in K_{j}} \sigma(k)\right)$.

2 An embedding theorem

Theorem 1 Let I be a non-empty set and \mathcal{D} an ultrafilter over I. Then, for arbitrary similar algebraic structures $A_{i}, i \in I$, the mapping

$$
\Phi: \sigma / \mathcal{D}^{*} \mapsto \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)
$$

is a \wedge-semilattice embedding of $\Pi_{\mathcal{D}}\left(\mathbf{C o n}\left(A_{i}\right) \mid i \in I\right)$ into $\mathbf{C o n}\left(\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)\right)$.

Proof. Let $\alpha=(\alpha(i))_{i \in I}$ and $\beta=(\beta(i))_{i \in I}$ be arbitrary elements of the direct product $\Pi\left(\mathbf{C o n}\left(A_{i}\right) \mid i \in I\right)$. First we show that $\alpha / \mathcal{D}^{*}=\beta / \mathcal{D}^{*}$ if and only if $\Pi_{\mathcal{D}}(\alpha(i) \mid i \in I)=\Pi_{\mathcal{D}}(\beta(i) \mid i \in I)$. By the Correspondence Theorem (Theorem 6.20 of Chapter II of [1]), it is sufficient to show that $\alpha / \mathcal{D}^{*}=\beta / \mathcal{D}^{*}$ if and only if $\Pi(\alpha(i) \mid i \in I)=\Pi(\beta(i) \mid i \in I)$.

Assume $\alpha / \mathcal{D}^{*}=\beta / \mathcal{D}^{*}$. Then $A=\{i \in I: \alpha(i)=\beta(i)\} \in \mathcal{D}$. If $(a, b) \in$ $\Pi(\alpha(i) \mid i \in I)$ for some elements $a=(a(i))_{i \in I}$ and $b=(b(i))_{i \in I}$ of $\Pi\left(A_{i} \mid i \in I\right)$ then $B=\{i \in I:(a(i), b(i)) \in \alpha(i)\} \in \mathcal{D}$ and so, for every $i \in A \cap B \in \mathcal{D}$, $(a(i), b(i)) \in \beta(i)$ from which it follows that $\{i \in I:(a(i), b(i)) \in \beta(i)\} \in \mathcal{D}$. Thus $(a, b) \in \Pi(\beta(i) \mid i \in I)$. Hence $\Pi(\alpha(i) \mid i \in I) \subseteq \Pi(\beta(i) \mid i \in I)$. We can prove $\Pi(\beta(i) \mid i \in I) \subseteq \Pi(\alpha(i) \mid i \in I)$ in a similar way. Thus $\Pi(\alpha(i) \mid i \in I)=$ $\Pi(\beta(i) \mid i \in I)$.

To prove the converse, assume $\Pi(\alpha(i) \mid i \in I)=\Pi(\beta(i) \mid i \in I)$. We show that $K=\{i \in I \mid \alpha(i)=\beta(i)\} \in \mathcal{D}$. Assume, in an indirect way, that $K \notin \mathcal{D}$. Then $I \backslash K \in \mathcal{D}$.

First assume $R=\{i \in I: \alpha(i) \subset \beta(i)\} \in \mathcal{D}$. Then $(I \backslash R) \notin \mathcal{D}$. For $i \in R$, let $\left(a_{i}, b_{i}\right)$ be an element of $A_{i} \times A_{i}$ such that $\left(a_{i}, b_{i}\right) \in \beta(i)$ and $\left(a_{i}, b_{i}\right) \notin \alpha(i)$. For the indexes $i \in I \backslash R$, let $\left(a_{i}, b_{i}\right) \in A_{i} \times A_{i}$ be arbitrary. Let a and b be the elements of $\Pi\left(A_{i} \mid i \in I\right)$ for which $a(i)=a_{i}$ and $b(i)=b_{i}$. As $(a(i), b(i)) \in \beta(i)$ for every $i \in R \in \mathcal{D}$, we have $\{i \in I:(a(i), b(i)) \in \beta(i)\} \in \mathcal{D}$ and so $(a, b) \in$ $\Pi(\beta(i) \mid i \in I)$. We show that $(a, b) \notin \Pi(\alpha(i) \mid i \in I)$. Assume, in an indirect way, that $(a, b) \in \Pi(\alpha(i) \mid i \in I)$. Then $V=\{i \in I:(a(i), b(i)) \in \alpha(i)\} \in \mathcal{D}$. As $V \subseteq I \backslash R$, we have $I \backslash R \in \mathcal{D}$ and so $R \notin \mathcal{D}$ which is a contradiction. Hence $(a, b) \notin \Pi(\alpha(i) \mid i \in I)$. This implies $\Pi(\alpha(i) \mid i \in I) \neq \Pi \beta(i) \mid i \in I)$ which is a contradiction.

Next consider the case when $R=\{i \in I: \alpha(i) \subset \beta(i)\} \notin \mathcal{D}$. Then $\{i \in I: \alpha(i) \subseteq \beta(i)\}=K \cup R \notin \mathcal{D}$. For every $i \in I \backslash(K \cup R) \in \mathcal{D}$, there are elements a_{i}, b_{i} of A_{i} such that $\left(a_{i}, b_{i}\right) \in \alpha(i), \quad\left(a_{i}, b_{i}\right) \notin \beta(i)$. For an index $i \in K \cup R$, let the elements $a_{i}, b_{i} \in A_{i}$ be arbitrary. Let a and b be the elements of $\Pi\left(A_{i} \mid i \in I\right)$ for which $a(i)=a_{i}$ and $b(i)=b_{i}$. It is clear that $(a, b) \in \Pi(\alpha(i) \mid i \in I)$. We show that $(a, b) \notin \Pi_{\mathcal{D}}(\beta(i) \mid i \in I)$. Assume, in an indirect way, that $(a, b) \in \Pi(\beta(i) \mid i \in I)$. Then $\{i \in I:(a(i), b(i)) \in \beta(i)\} \in \mathcal{D}$. As $\{i \in I:(a(i), b(i)) \in \beta(i)\} \subseteq K \cup R$, we have $K \cup R \in \mathcal{D}$ which is a contradiction. Thus $(a, b) \notin \Pi(\beta(i) \mid i \in I)$. Hence $\Pi(\alpha(i) \mid i \in I) \neq \Pi(\beta(i) \mid i \in$ I) which is a contradiction. We got a contradiction in both cases. Thus $K=\{i \in I: \alpha(i)=\beta(i)\} \in \mathcal{D}$. Consequently $\alpha / \mathcal{D}^{*}=\beta / \mathcal{D}^{*}$.

Thus

$$
\Phi: \sigma / \mathcal{D}^{*} \mapsto \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)
$$

is a well defined injective mapping. We show that Φ is a \wedge-homomorphism. For arbitrary $a, b \in \Pi\left(A_{i} \mid i \in I\right)$, let $I_{\alpha \wedge \beta}=\{i \in I:(a(i), b(i)) \in(\alpha \wedge \beta)(i)=\alpha(i) \wedge$ $\beta(i)\}, I_{\alpha}=\{i \in I:(a(i), b(i)) \in \alpha(i)\}$ and $I_{\beta}=\{i \in I:(a(i), b(i)) \in \beta(i)\}$. It is easy to see that $I_{\alpha \wedge \beta}=I_{\alpha} \cap I_{\beta}$. As \mathcal{D} is an ultrafilter, $I_{\alpha} \cap I_{\beta} \in \mathcal{D}$
if and only if $I_{\alpha} \in \mathcal{D}$ and $I_{\beta} \in \mathcal{D}$. From the above it follows that $(a, b) \in$ $\Pi((\alpha \wedge \beta)(i) \mid i \in I)$ if and only if $(a, b) \in \Pi(\alpha(i) \mid i \in I) \wedge \Pi(\beta(i) \mid i \in I)$. Hence $\Pi((\alpha \wedge \beta)(i) \mid i \in I)=\Pi(\alpha(i) \mid i \in I) \wedge \Pi(\beta(i) \mid i \in I)$. By the Correspondence Theorem (Theorem 6.20 of Chapter II of [1]), we have $\Pi_{\mathcal{D}}((\alpha \wedge \beta)(i) \mid i \in I)=$ $\Pi_{\mathcal{D}}(\alpha(i) \mid i \in I) \wedge \Pi_{\mathcal{D}}(\beta(i) \mid i \in I)$. Then

$$
\begin{gathered}
\Phi\left(\alpha / \mathcal{D}^{*} \wedge \beta / \mathcal{D}^{*}\right)=\Phi\left((\alpha \wedge \beta) / \mathcal{D}^{*}\right)=\Pi_{\mathcal{D}}((\alpha \wedge \beta)(i) \mid i \in I)= \\
=\Pi_{\mathcal{D}}(\alpha(i) \mid i \in I) \wedge \Pi_{\mathcal{D}}(\beta(i) \mid i \in I)=\Phi\left(\alpha / \mathcal{D}^{*}\right) \wedge \Phi\left(\beta / \mathcal{D}^{*}\right)
\end{gathered}
$$

and so Φ is a \wedge-homomorphism. Thus Φ is an embedding of the \wedge-semilattice $\Pi_{\mathcal{D}}\left(\mathbf{C o n}\left(A_{i}\right) \mid i \in I\right)$ into the \wedge-semilattice $\operatorname{Con}\left(\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)\right)$.

3 An isomorphism theorem

Theorem 2 Let I be a non-empty set and \mathcal{D} an ultrafilter over I. Then, for arbitrary similar algebraic structures $A_{i}, i \in I$ and an arbitrary congruence $\sigma(i)$ on $A_{i}(i \in I), \Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right) / \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \cong \Pi_{\mathcal{D}}\left(A_{i} / \sigma(i) \mid i \in I\right)$.

Proof. As $\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right) / \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \cong \Pi\left(A_{i} \mid i \in I\right) / \Pi(\sigma(i) \mid i \in I)$ by the Second Isomorphic Theorem (Theorem 6.15 of Chapter II of [1]), it is sufficient to show that $\Pi\left(A_{i} \mid i \in I\right) / \Pi(\sigma(i) \mid i \in I) \cong \Pi_{\mathcal{D}}\left(A_{i} / \sigma(i) \mid i \in I\right)$. For an element $a=(a(i))_{i \in I}$ of the direct product $\Pi\left(A_{i} \mid i \in I\right)$, let $\Delta(a)=\left([a(i)]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}$, where $[a(i)]_{\sigma(i)}$ denotes the $\sigma(i)$-class of A_{i} containing $a(i)$. It is obvious that $\Delta: \Pi\left(A_{i} \mid i \in I\right) \mapsto \Pi_{\mathcal{D}}\left(A_{i} / \sigma(i) \mid i \in I\right)$ is a well defined surjective mapping. Let $a_{j}=\left(a_{j}(i)\right)_{i \in I}, \quad(j=1, \ldots, n)$ be arbitrary elements of $\Pi\left(A_{i} \mid i \in I\right)$. If $\omega_{n} \in \Omega$ is an n-ary operation then

$$
\begin{gathered}
\omega_{n}\left(\Delta\left(a_{1}\right), \ldots, \Delta\left(a_{n}\right)\right)=\omega_{n}\left(\left(\left[a_{1}(i)\right]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}, \ldots,\left(\left[a_{n}(i)\right]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}\right)= \\
=\omega_{n}\left(\left(\left[a_{1}(i)\right]_{\sigma(i)}\right)_{i \in I}, \ldots,\left(\left[a_{n}(i)\right]_{\sigma(i)}\right)_{i \in I}\right) / \mathcal{D}^{*}= \\
=\left(\omega_{n}\left(\left[a_{1}(i)\right]_{\sigma(i)}, \ldots,\left[a_{n}(i)\right]_{\sigma(i)}\right)\right)_{i \in I} / \mathcal{D}^{*}=\left(\left[\omega_{n}\left(a_{1}(i), \ldots, a_{n}(i)\right)\right]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}= \\
=\left(\left(\left[\omega_{n}\left(a_{1}, \ldots, a_{n}\right)(i)\right]_{\sigma(i)}\right)_{i \in I}\right) / \mathcal{D}^{*}=\Delta\left(\omega_{n}\left(a_{1}, \ldots, a_{n}\right)\right) .
\end{gathered}
$$

Thus Δ is a homomorphism. For elements $a=(a(i))_{i \in I}$ and $b=(b(i))_{i \in I}$ of $\Pi\left(A_{i} \mid i \in I\right), \Delta(a)=\Delta(b)$ if and only if $\left([a(i)]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}=\left([b(i)]_{\sigma(i)}\right)_{i \in I} / \mathcal{D}^{*}$, that is, $\left\{i \in I \mid[a(i)]_{\sigma(i)}=[b(i)]_{\sigma(i)}\right\} \in \mathcal{D}$. This last condition is equivalent to the condition that $\{i \in I \mid(a(i), b(i)) \in \sigma(i)\} \in \mathcal{D}$, that is, $(a, b) \in \Pi(\sigma(i) \mid i \in$ $I)$. Thus the kernel of Δ is $\Pi(\sigma(i) \mid i \in I)$. Our assertion follows from the Homomorphism Theorem (Theorem 6.12 of Chapter II of [1]).

4 Ultrapowers

Let A be an algebraic structure. If \mathcal{D} is an ultrafilter over a non-empty set I, we can consider the ultrapower of A modulo \mathcal{D} as the ultraproduct $\Pi_{\mathcal{D}}\left(A_{i} \mid i \in I\right)$, where $A_{i}=A$ for all $i \in I$. For an arbitrary element $a \in A$, let $\xi(a)$ denote the \mathcal{D}^{*}-class of the direct product $\Pi(A \mid i \in I)$ which contains the constant function with value a. It is known (Lemma 2.10 of Chapter V of [1]) that $\xi: a \mapsto \xi(a)$ is an embedding (the natural embedding) of A into the ultrapower $\Pi_{\mathcal{D}}(A \mid i \in I)$. Identify A and $\xi(A)$. Let $\sigma(i), i \in I$ be arbitrary congruences on A. Let $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \mid A$ denote the restriction of the congruence $\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ to A. It is clear that, for some $a, b \in A,(a, b) \in \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I) \mid A$ if and only if $\{i \in I \mid(a, b) \in \sigma(i)\} \in \mathcal{D}$.

Theorem 3 Let I be a non-empty set and $\mathcal{D}=\left\{K_{j} \mid j \in J\right\}$ an ultrafilter over I. Then, for an arbitrary family $\{\sigma(i) \mid i \in I\}$ of congruences $\sigma(i)$ on an algebraic structure $A, \cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$ is a congruence on A such that $\left.\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A}=\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)=\vee_{j \in J}\left(\wedge_{k \in K_{j}} \sigma(k)\right)$.

Proof. For a couple (a, b) of elements a and b of $A \subseteq \Pi_{\mathcal{D}}(A \mid i \in I)$, let $K_{a, b}=\{i \in I \mid(a, b) \in \sigma(i)\}$. Assume $(a, b) \in \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)$ for some $a, b \in A$. Then $K_{a, b} \in \mathcal{D}$ and so $(a, b) \in \cap_{k \in K_{a, b}} \sigma(k)$ from which it follows that $(a, b) \in$ $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$. Thus $\left.\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A} \subseteq \cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$.

Conversely, assume $(a, b) \in \cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$ for some $a, b \in A$. Then there is an index $j \in J$ such that $(a, b) \in\left(\cap_{k \in K_{j}} \sigma(k)\right)$. Thus $K_{j} \subseteq K_{a, b}$ and so $K_{a, b} \in \mathcal{D}$. Hence $\left.(a, b) \in \Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A}$. Thus $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k) \subseteq\right.$ $\left.\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A}$. Consequently $\left.\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A}=\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$. Thus $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$ is a congruence on A. It is obvious that $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)$ is a common upper bound of the congruences $\sigma_{j}=\cap_{k \in K_{j}} \sigma(k), j \in J$. Moreover, for every common upper bound β of $\sigma_{j}, j \in J$, we have $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right) \subseteq$ β and so $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)=\vee_{j \in J}\left(\wedge_{k \in K_{j}} \sigma(k)\right)$. Hence $\left.\Pi_{\mathcal{D}}(\sigma(i) \mid i \in I)\right|_{A}=$ $\cup_{j \in J}\left(\cap_{k \in K_{j}} \sigma(k)\right)=\vee_{j \in J}\left(\wedge_{k \in K_{j}} \sigma(k)\right)$.

References

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, 1981.
[2] G. Grätzer, Universal Algebra, Van Nostrand, 1968.

Received: November 30, 2015; Published: January 18, 2016

[^0]: ${ }^{1}$ This work was supported by the National Research, Development and Innovation Office NKFIH, 115288.

