Direct Product of B-algebras

Jacel Angeline V. Lingcong and Joemar C. Endam

Department of Mathematics
College of Arts and Sciences
Negros Oriental State University
Dumaguete City 6200, Philippines

Copyright © 2016 Jacel Angeline V. Lingcong and Joemar C. Endam. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce the direct product of B-algebras and we obtain some of its properties.

Mathematics Subject Classification: 06F35

Keywords: Direct product of B-algebras, subalgebra, B-homomorphism, normality

1 Introduction

In 2002, the concept of B-algebras [6] was introduced by J. Neggers and H.S. Kim. A B-algebra \(A = (A; \ast, 0) \) is an algebra of type \((2, 0)\), that is, a nonempty set \(A \) together with a binary operation \(\ast \) and a constant 0 satisfying the following axioms for all \(x, y, z \in A \): (I) \(x \ast x = 0 \), (II) \(x \ast 0 = x \), and (III) \((x \ast y) \ast z = x \ast (z \ast (0 \ast y)) \). In the same paper, the concept of commutative B-algebras was also introduced. A B-algebra \(A \) is commutative if \(x \ast (0 \ast y) = y \ast (0 \ast x) \) for all \(x, y \in A \). H.S. Kim and H.G. Park [4] characterized commutativity of B-algebras. In [7], J. Neggers and H.S. Kim introduced the notions of subalgebras and normality in B-algebras, and established their properties. A nonempty subset \(N \) of \(A \) is called a subalgebra of \(A \) if \(x \ast y \in N \)
for any $x, y \in N$. By (I), 0 is always an element of a subalgebra. A nonempty subset N of A is called a normal subalgebra of A if $(x \ast a) \ast (y \ast b) \in N$ for any $x \ast y, a \ast b \in N$. A. Walendziak [9] characterized normality in B-algebras. J. Neggers and H.S. Kim used the concept of normality in B-algebras to construct quotient B-algebras. That is, given a normal subalgebra N of a B-algebra A, the relation \sim_N is defined by $x \sim_N y$ if and only if $x \ast y \in N$ for any $x, y \in A$. Then \sim_N is a congruence relation of A. For $x \in A$, we write xN for the congruence class containing x, that is, $xN = \{y \in A : x \sim_N y\}$. Denote $A/N = \{xN : x \in A\}$ and define \ast' on A/N by $xN \ast' yN = (x \ast y)N$. Note that $xN = yN$ if and only if $x \sim_N y$. The algebra $A/N = (A/N; \ast', N)$ is a B-algebra, and is called the quotient B-algebra of A modulo N. The concept of B-homomorphism was also introduced by J. Neggers and H.S. Kim. A map $\varphi : A \to B$ is called a B-homomorphism if $\varphi(x \ast y) = \varphi(x) \ast \varphi(y)$ for any $x, y \in A$. The kernel of φ, denoted by ker φ, is defined to be the set $\{x \in A : \varphi(x) = 0_B\}$. The ker φ is a normal subalgebra of A, and ker $\varphi = \{0_A\}$ if and only if φ is one-one. A B-homomorphism φ is called a B-monomorphism, B-epimorphism, or B-isomorphism if φ is one-one, onto, or a bijection, respectively. In [7], the first and third isomorphism theorems for B-algebras are established. In [3], J.C. Endam and J.P. Vilela established the second isomorphism theorem for B-algebras. In this paper, we introduced the direct product of B-algebras and established some of its properties.

2 Direct Product of B-algebras

We begin with some examples of B-algebras.

Example 2.1 The algebra $(\mathbb{Z}; \ast, 0)$ is a B-algebra, where \ast is defined by $x \ast y = x - y$ for all $x, y \in \mathbb{Z}$.

Example 2.2 [6] Let $A = \{0, 1, 2, 3, 4, 5\}$ be a set with the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $(A; \ast, 0)$ is a B-algebra.

Let $A = (A; \ast, 0_A)$ and $B = (B; \ast, 0_B)$ be B-algebras. Define the direct product of A and B to be the structure $A \times B = (A \times B; \circledast, (0_A, 0_B))$, where
A × B is the set \{ (a, b) : a ∈ A and b ∈ B \} and whose binary operation ⊕ is given by \((a_1, b_1) ⊕ (a_2, b_2) = (a_1 * a_2, b_1 * b_2)\). Note that the binary operation ⊕ is componentwise. Thus, the properties (I), (II), and (III) of A × B follow from those of A and B. Hence, the following theorem easily follows.

Theorem 2.3 The direct product of two B-algebras is also a B-algebra.

Now, we extend this direct product to any finite family of B-algebras and obtain some of its properties. Let \(I_n = \{1, 2, \ldots , n\} \) and let \(\{ A_i = (A_i; *, 0_i) : i ∈ I_n \} \) be a finite family of B-algebras. Define the direct product of B-algebras \(A_1, \ldots , A_n \) to be the structure \(\prod_{i=1}^{n} A_i = \left(\prod_{i=1}^{n} A_i; ⊕, (0_1, \ldots , 0_n) \right) \), where

\[\prod_{i=1}^{n} A_i = A_1 × \cdots × A_n = \{ (a_1, \ldots , a_n) : a_i ∈ A_i, i ∈ I_n \} \]

and whose operation ⊕ is given by

\[(a_1, \ldots , a_n) ⊕ (b_1, \ldots , b_n) = (a_1 * b_1, \ldots , a_n * b_n). \]

Obviously, ⊕ is a binary operation on \(\prod_{i=1}^{n} A_i \).

Corollary 2.4 If \(\{ A_i = (A_i; *, 0_i) : i ∈ I_n \} \) is a family of B-algebras, then \(\prod_{i=1}^{n} A_i \) is a B-algebra.

Theorem 2.5 Let \(\{ A_i = (A_i; *, 0_i) : i ∈ I_n \} \) be a family of B-algebras. Then each \(A_i \) is commutative if and only if \(\prod_{i=1}^{n} A_i \) is commutative.

Proof: Let each \(A_i \) be commutative. If \((a_1, \ldots , a_n), (b_1, \ldots , b_n) ∈ \prod_{i=1}^{n} A_i\), then \(a_i, b_i ∈ A_i \) and \(a_i * (0_i * b_i) = b_i * (0_i * a_i) \) for all \(i ∈ I_n \). Thus,

\[
(a_1, \ldots , a_n) ⊕ ((0_1, \ldots , 0_n) ⊕ (b_1, \ldots , b_n)) = (a_1, \ldots , a_n) ⊕ (0_1 * b_1, \ldots , 0_n * b_n)
\]

\[= (a_1 * (0_1 * b_1), \ldots , a_n * (0_n * b_n))\]

\[= (b_1 * (0_1 * a_1), \ldots , b_n * (0_n * a_n))\]

\[= (b_1, \ldots , b_n) ⊕ (0_1 * a_1, \ldots , 0_n * a_n)\]

\[= (b_1, \ldots , b_n) ⊕ ((0_1, \ldots , 0_n) ⊕ (a_1, \ldots , a_n)).\]
Therefore, $\prod_{i=1}^{n} A_i$ is commutative.

Conversely, let $\prod_{i=1}^{n} A_i$ be commutative. If $a_i, b_i \in A_i$ for all $i \in I_n$, then

$$(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in \prod_{i=1}^{n} A_i \text{ and } (a_1, \ldots, a_n) \ast ((0_1, \ldots, 0_n) \ast (b_1, \ldots, b_n)) = (b_1, \ldots, b_n) \ast ((0_1, \ldots, 0_n) \ast (a_1, \ldots, a_n)).$$

Thus,

$$(a_1 \ast (0_1 \ast b_1), \ldots, a_n \ast (0_n \ast b_n)) = (a_1, \ldots, a_n) \ast (0_1 \ast b_1, \ldots, 0_n \ast b_n) = (a_1, \ldots, a_n) \ast ((0_1, \ldots, 0_n) \ast (b_1, \ldots, b_n)) = (b_1, \ldots, b_n) \ast ((0_1, \ldots, 0_n) \ast (a_1, \ldots, a_n)) = (b_1, \ldots, b_n) \ast (0_1 \ast a_1, \ldots, 0_n \ast a_n) = (b_1 \ast (0_1 \ast a_1), \ldots, b_n \ast (0_n \ast a_n)).$$

This implies that $a_i \ast (0_i \ast b_i) = b_i \ast (0_i \ast a_i)$ for all $i \in I_n$. Therefore, each A_i is commutative. □

Theorem 2.6 Let $\{\varphi_i: A_i \rightarrow B_i : i \in I_n\}$ be a family of B-homomorphisms.

If φ is the map $\prod_{i=1}^{n} A_i \rightarrow \prod_{i=1}^{n} B_i$ given by $(a_1, \ldots, a_n) \mapsto (\varphi_1(a_1), \ldots, \varphi_n(a_n)),$

then φ is a B-homomorphism with $\ker \varphi = \prod_{i=1}^{n} \ker \varphi_i$, $\varphi(\prod_{i=1}^{n} A_i) = \prod_{i=1}^{n} \varphi_i(A_i)$.

Furthermore, φ is a B-monomorphism (respectively, B-epimorphism) if and only if each φ_i is a B-monomorphism (respectively, B-epimorphism).

Proof: Let $\{\varphi_i: A_i \rightarrow B_i : i \in I_n\}$ be a family of B-homomorphisms and let φ be the map $\prod_{i=1}^{n} A_i \rightarrow \prod_{i=1}^{n} B_i$ given by $(a_1, \ldots, a_n) \mapsto (\varphi_1(a_1), \ldots, \varphi_n(a_n)).$

If $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in \prod_{i=1}^{n} A_i$, then

$$\varphi((a_1, \ldots, a_n) \ast (b_1, \ldots, b_n)) = \varphi((a_1 \ast b_1, \ldots, a_n \ast b_n)) = (\varphi_1(a_1 \ast b_1), \ldots, \varphi_n(a_n \ast b_n)) = (\varphi_1(a_1) \ast \varphi_1(b_1), \ldots, \varphi_n(a_n) \ast \varphi_n(b_n)) = (\varphi_1(a_1), \ldots, \varphi_n(a_n)) \ast (\varphi(b_1), \ldots, \varphi(b_n)) = \varphi((a_1, \ldots, a_n)) \ast \varphi((b_1, \ldots, b_n)).$$
This shows that φ is a B-homomorphism. Moreover, if φ is a B-homomorphism, then each φ_i is also a B-homomorphism. Now,

\[(a_1, \ldots, a_n) \in \ker \varphi \iff \varphi((a_1, \ldots, a_n)) = (0_1, \ldots, 0_n)\]
\[\iff (\varphi_1(a_1), \ldots, \varphi_n(a_n)) = (0_1, \ldots, 0_n)\]
\[\iff \varphi_i(a_i) = 0_i \text{ for each } i \in I_n\]
\[\iff a_i \in \ker \varphi_i \text{ for each } i \in I_n\]
\[\iff (a_1, \ldots, a_n) \in \prod_{i=1}^n \ker \varphi_i.\]

Thus, $\ker \varphi = \prod_{i=1}^n \ker \varphi_i$. Let $A = \prod_{i=1}^n A_i$. Then

\[(b_1, \ldots, b_n) \in \varphi(A) \iff \exists (a_1, \ldots, a_n) \in A \ni (b_1, \ldots, b_n) = \varphi((a_1, \ldots, a_n))\]
\[\iff \exists (a_1, \ldots, a_n) \in A \ni (b_1, \ldots, b_n) = (\varphi_1(a_1), \ldots, \varphi_n(a_n))\]
\[\iff \exists a_i \in A_i \ni b_i = \varphi_i(a_i) \in \varphi(A_i) \text{ for each } i \in I_n\]
\[\iff (b_1, \ldots, b_n) \in \prod_{i=1}^n \varphi_i(A_i).\]

Thus, $\varphi(\prod_{i=1}^n A_i) = \prod_{i=1}^n \varphi_i(A_i)$.

To prove the last statement, let φ be one-to-one. If $\varphi_i(a_i) = \varphi_i(b_i)$ for each $i \in I_n$, then

\[\varphi((a_1, \ldots, a_n)) = (\varphi_1(a_1), \ldots, \varphi_n(a_n))\]
\[= (\varphi_1(b_1), \ldots, \varphi_n(b_n))\]
\[= \varphi((b_1, \ldots, b_n)).\]

Since φ is one-to-one, $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$, that is, $a_i = b_i$ for each $i \in I_n$. Therefore, φ_i is one-to-one for each $i \in I_n$. Conversely, let φ_i be one-to-one for each $i \in I_n$. If $\varphi((a_1, \ldots, a_n)) = \varphi((b_1, \ldots, b_n))$, then

\[(\varphi_1(a_1), \ldots, \varphi_n(a_n)) = \varphi((a_1, \ldots, a_n))\]
\[= \varphi((b_1, \ldots, b_n))\]
\[= (\varphi_1(b_1), \ldots, \varphi_n(b_n)).\]

Thus, $\varphi_i(a_i) = \varphi_i(b_i)$ for each $i \in I_n$. Since each φ_i is one-to-one, $a_i = b_i$ for each $i \in I_n$ and so $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$. Therefore, φ is one-to-one.

Finally, we show that φ is onto if and only if each φ_i is. Let φ be onto. If $b_i \in B_i$ for each $i \in I_n$, then $(b_1, \ldots, b_n) \in \prod_{i=1}^n B_i$. Since φ is onto,
there exists \((a_1, \ldots, a_n) \in \prod_{i=1}^{n} A_i\) such that \((b_1, \ldots, b_n) = \varphi((a_1, \ldots, a_n)) = (\varphi_1(a_1), \ldots, \varphi_n(a_n))\), that is, \(b_i = \varphi_i(a_i)\) for each \(i \in I_n\). Therefore, \(\varphi_i\) is onto for each \(i \in I_n\). Conversely, let \(\varphi_i\) be onto for each \(i \in I_n\). If \((b_1, \ldots, b_n) \in \prod_{i=1}^{n} B_i\), then \(b_i \in B_i\) for each \(i \in I_n\). Since each \(\varphi_i\) is onto, there exists \(a_i \in A_i\) such that \(b_i = \varphi_i(a_i)\) for each \(i \in I_n\) so that \((b_1, \ldots, b_n) = (\varphi_1(a_1), \ldots, \varphi_n(a_n)) = \varphi((a_1, \ldots, a_n))\). Therefore, \(\varphi\) is onto and so the theorem is finally proved. \(\square\)

Remark 2.7 Let \(\{A_i = (A_i; *, 0_i): i \in I_n\}\) and \(\{B_i = (B_i; *, 0_i): i \in I_n\}\) be any two families of B-algebras such that \(A_i \cong B_i\) for each \(i \in I_n\). Then \(\prod_{i=1}^{n} A_i \cong \prod_{i=1}^{n} B_i\).

Theorem 2.8 Let \(\{A_i = (A_i; *, 0_i): i \in I_n\}\) be a family of B-algebras and let \(J_i\) be a normal subalgebra of \(A_i\) for each \(i \in I_n\). Then \(\prod_{i=1}^{n} J_i\) is a normal subalgebra of \(\prod_{i=1}^{n} A_i\) and \(\prod_{i=1}^{n} A_i / \prod_{i=1}^{n} J_i \cong \prod_{i=1}^{n} (A_i/J_i)\).

Proof: Let \(\{A_i = (A_i; *, 0_i) : i \in I_n\}\) be a family of B-algebras and let \(J_i\) be a normal subalgebra of \(A_i\) for each \(i \in I_n\). Then \((0_1, \ldots, 0_n) \in \prod_{i=1}^{n} J_i\) since \(0_i \in J_i\) for each \(i \in I_n\) and so \(\prod_{i=1}^{n} J_i\) is not empty. Let \((x_1, \ldots, x_n) \circ (y_1, \ldots, y_n), (a_1, \ldots, a_n) \circ (b_1, \ldots, b_n) \in \prod_{i=1}^{n} J_i\). Then \((x_1 \circ y_1, \ldots, x_n \circ y_n), (a_1 \circ b_1, \ldots, a_n \circ b_n) \in \prod_{i=1}^{n} J_i\). This means that \(x_i \circ y_i, a_i \circ b_i \in J_i\) for each \(i \in I_n\).

Since each \(J_i\) is a normal subalgebra of \(A_i\), \((x_i \circ a_i) \circ (y_i \circ b_i) \in J_i\). Hence, \(((x_1, \ldots, x_n) \circ (a_1, \ldots, a_n)) \circ ((y_1, \ldots, y_n) \circ (b_1, \ldots, b_n)) = (x_1 \circ a_1, \ldots, x_n \circ a_n) \circ (y_1 \circ b_1, \ldots, y_n \circ b_n) \in \prod_{i=1}^{n} J_i\).

Therefore, \(\prod_{i=1}^{n} J_i\) is a normal subalgebra of \(\prod_{i=1}^{n} A_i\).

Let \(J = \prod_{i=1}^{n} J_i\) and \(A = \prod_{i=1}^{n} A_i\). Define \(\varphi : A/J \to \prod_{i=1}^{n} (A_i/J_i)\) given by
\[\varphi((a_1, \ldots, a_n)J) = (a_1J_1, \ldots, a_nJ_n) \text{ for all } (a_1, \ldots, a_n)J \subseteq A/J. \] Let \((a_1, \ldots, a_n)J, (b_1, \ldots, b_n)J \subseteq A/J. \] If \((a_1, \ldots, a_n)J = (b_1, \ldots, b_n)J, \) then \((a_1, \ldots, a_n) \sim_J (b_1, \ldots, b_n), \) that is, \((a_1 * b_1, \ldots, a_n * b_n) = (a_1, \ldots, a_n) \odot (b_1, \ldots, b_n) \in J. \] Thus, \(a_i * b_i \in J_i \) for all \(i \in I_n, \) that is, \(a_i \sim_J b_i \) so that \(a_iJ_i = b_iJ_i. \) It follows that

\[\varphi((a_1, \ldots, a_n)J) = (a_1J_1, \ldots, a_nJ_n) = (b_1J_1, \ldots, b_nJ_n) = \varphi((b_1, \ldots, b_n)J). \]

This shows that \(\varphi\) is well-defined. If \((a_1, \ldots, a_n)J, (b_1, \ldots, b_n)J \subseteq A/J, \) then

\[
\varphi((a_1, \ldots, a_n)J *^\ast (b_1, \ldots, b_n)J) = \varphi(((a_1, \ldots, a_n) \odot (b_1, \ldots, b_n))J)\\ = \varphi((a_1 * b_1, \ldots, a_n * b_n)J)\\ = ((a_1J_1, \ldots, a_nJ_n) \odot (b_1J_1, \ldots, b_nJ_n)\\ = (a_1J_1, \ldots, a_nJ_n) \odot (b_1J_1, \ldots, b_nJ_n)\\ = \varphi((a_1, \ldots, a_n)J) \odot \varphi((b_1, \ldots, b_n)J).
\]

This shows that \(\varphi\) is a homomorphism.

If \(\varphi((a_1, \ldots, a_n)J) = \varphi((b_1, \ldots, b_n)J), \) then

\[
(a_1J_1, \ldots, a_nJ_n) = \varphi((a_1, \ldots, a_n)J)\\ = \varphi((b_1, \ldots, b_n)J)\\ = (b_1J_1, \ldots, b_nJ_n).
\]

Thus, \(a_iJ_i = b_i/J_i \) for all \(i \in I_n. \) Hence, \(a_i \sim_J b_i, \) that is, \(a_i * b_i \in J_i \) for all \(i \in I_n \) so that \((a_1, \ldots, a_n) \odot (b_1, \ldots, b_n) = (a_1 * b_1, \ldots, a_n * b_n) \subseteq J. \) Thus, \((a_1, \ldots, a_n) \sim_J (b_1, \ldots, b_n) \) and so \((a_1, \ldots, a_n)J = (b_1, \ldots, b_n)J. \) This shows that \(\varphi\) is one-to-one.

If \((a_1J_1, \ldots, a_nJ_n) \subseteq \prod_{i=1}^{n}(A_i/J_i), \) then \(a_i \in A_i \) for all \(i \in I_n, \) that is, \((a_1, \ldots, a_n) \subseteq A. \) It follows that \((a_1J_1, \ldots, a_nJ_n) = \varphi((a_1, \ldots, a_n)J), \) where \((a_1, \ldots, a_n)J \subseteq A/J. \) This shows that \(\varphi\) is onto. Therefore, \(\varphi\) is a B-isomorphism, that is, \(\prod_{i=1}^{n}A_i/\prod_{i=1}^{n}J_i \cong \prod_{i=1}^{n}(A_i/J_i).\]

\[\square \]

References

Received: December 29, 2015; Published: February 5, 2016