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Abstract

In this paper, we consider the degenerate twisted q-tangent numbers
and polynomials associated with the p-adic integral on Zp. We also
obtain some explicit formulas for degenerate twisted q-tangent numbers
and polynomials.
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1 Introduction

L. Carlitz introduced the degenerate Bernoulli polynomials(see [1]). Feng Qi et
al.[2] studied the partially degenerate Bernoull polynomials of the first kind in
p-adic field. T. Kim studied the Barnes’ type multiple degenerate Bernoulli and
Euler polynomials(see [3]), Recently, Ryoo introduced the twisted q-tangent
numbers and tangent polynomials(see [5, 6]). In this paper, we introduce de-
generate twisted q-tangent numbers Tn,q,ζ(λ) and tangent polynomials Tn,q,ζ(x, λ).
Let p be a fixed odd prime number. Throughout this paper we use the follow-
ing notations. By Zp we denote the ring of p-adic rational integers, Qp denotes
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the field of rational numbers, N denotes the set of natural numbers, C denotes
the complex number field, Cp denotes the completion of algebraic closure of
Qp, N denotes the set of natural numbers and Z+ = N ∪ {0} , and C denotes
the set of complex numbers. Let νp be the normalized exponential valuation
of Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered
in many ways such as an indeterminate, a complex number q ∈ C, or p-adic
number q ∈ Cp. If q ∈ C one normally assumes that |q| < 1. If q ∈ Cp, we

normally assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1.
For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},

the fermionic p-adic invariant integral on Zp is defined by Kim as follows:

I−1(g) =

∫
Zp

g(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

g(x)(−1)x, (see [2, 3]). (1.1)

If we take g1(x) = g(x+ 1) in (1.1), then we see that

I−1(g1) + I−1(g) = 2g(0), (see [2, 3]). (1.2)

We recall that the classical Stirling numbers of the first kind S1(n, k) and
S2(n, k) are defined by the relations(see [8])

(x)n =
n∑
k=0

S1(n, k)xk and xn =
n∑
k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x− 1) · · · (x− n + 1) denotes the falling factorial
polynomial of order n. We also have

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
and

∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.3)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk) (1.4)

for positive integer n, with the convention (x|λ)0 = 1. We also need the
binomial theorem: for a variable x,

(1 + λt)x/λ =
∞∑
n=0

(x|λ)n
tn

n!
. (1.5)
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Let Tp = ∪N≥1CpN = limN→∞CpN , where CpN = {ζ|ζpN = 1} is the cyclic
group of order pN . For ζ ∈ Tp, we denote by φζ : Zp → Cp the locally constant
function x 7−→ ζx. For ζ ∈ Tp, and q ∈ Cp with |1 − q|p ≤ 1, if we take
g(x) = qxφζ(x)e2xt in (1.2), then we easily see that

I−1(q
xφζ(x)e2xt) =

∫
Zp

qxφζ(x)e2xtdµ−1(x) =
2

ζqe2t + 1
.

Let us define the twisted q-tangent numbers Tn,q,ζ and polynomials Tn,q,ζ(x)
as follows:

I−1(q
yφζ(y)e2yt) =

∫
Zp

qyφζ(y)e2ytdµ−1(y) =
∞∑
n=0

Tn,q,ζ
tn

n!
, (1.6)

2

ζqe2t + 1
ext =

∫
Zp

qyφζ(y)e(x+2y)tdµ−1(y) =
∞∑
n=0

Tn,q,ζ(x)
tn

n!
, (see [6]). (1.7)

Recently, many mathematicians have studied in the area of the q-analogues
of the degenerate Bernoulli umbers and polynomials, Euler numbers and poly-
nomials, tangent numbers and polynomials(see [1, 2, 3, 7, 8]). Our aim in this
paper is to define degenerate twisted q-tangent polynomials Tn,q,ζ(x, λ). We
investigate some properties which are related to twisted q-tangent numbers
Tn,q,ζ(λ) and polynomials Tn,q,ζ(x, λ).

2 On the degenerate twisted q-tangent poly-

nomials

In this section, we introduce degenerate twisted q-tangent numbers and poly-
nomials, and we obtain explicit formulas for them. For ζ ∈ Tp, and t, λ ∈ Zp
such that |λt|p < p−

1
p−1 , if we take g(x) = qxφζ(x)(1 + λt)2x/λ in (1.2), then

we easily see that∫
Zp

qxφζ(x)(1 + λt)2x/λdµ−1(x) =
2

ζq(1 + λt)2/λ + 1
.

Let us define the degenerate twisted q-tangent numbers Tn,q,ζ(λ) and polyno-
mials Tn,q,ζ(x, λ) as follows:∫

Zp

qyφζ(y)(1 + λt)2y/λdµ−1(y) =
∞∑
n=0

Tn,q,ζ(λ)
tn

n!
, (2.1)

∫
Zp

qyφζ(y)(1 + λt)(2y+x)/λdµ−1(y) =
∞∑
n=0

Tn,q,ζ(x, λ)
tn

n!
. (2.2)
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Note that (1 + λt)1/λ tends to et as λ→ 0. From (2.2) and (1.7), we note that

∞∑
n=0

lim
λ→0
Tn,q,ζ(x, λ)

tn

n!
= lim

λ→0

2

(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑
n=0

Tn,q,ζ(x)
tn

n!
.

Thus, we get

lim
λ→0
Tn,q,ζ(x, λ) = Tn,q,ζ(x), (n ≥ 0).

From (2.2) and (1.6), we have

∞∑
n=0

Tn,q,ζ(x, λ)
tn

n!
=

2

ζq(1 + λt)2/λ + 1
(1 + λt)x/λ

=

(
∞∑
m=0

Tm,q,ζ(λ)
tm

m!

)(
∞∑
l=0

(x|λ)l
tl

l!

)

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
Tl,q,ζ(λ)(x|λ)n−l

)
tn

n!
.

(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1 For n ≥ 0, we have

Tn,q,ζ(x, λ) =
n∑
l=0

(
n

l

)
Tl,q,ζ(λ)(x|λ)n−l.

By (2.1) and (2.2), we obtain the following Witt’s formula.

Theorem 2.2 For n ∈ Z+, we have

∫
Zp

qxφζ(x)(2x|λ)ndµ−1(x) = Tn,q,ζ(λ),∫
Zp

qyφζ(y)(x+ 2y|λ)ndµ−1(y) = Tn,q,ζ(x, λ).
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From (2.1), we can derive the following recurrence relation:

2 = (ζq(1 + λt)2/λ + 1)
∞∑
n=0

Tn,q,ζ(λ)
tn

n!

= ζq(1 + λt)2/λ
∞∑
n=0

Tn,q,ζ(λ)
tn

n!
+
∞∑
n=0

Tn,q,ζ(λ)
tn

n!

=

(
∞∑
l=0

ζq(2|λ)l
tl

l!

∞∑
m=0

Tm,q,ζ(λ)
tm

m!

)
+
∞∑
n=0

Tn,q,ζ(λ)
tn

n!

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
ζq(2|λ)lTn−l,q,ζ(λ) + Tn(λ)

)
tn

n!
.

(2.4)

By comparing of the coefficients tn

n!
on the both sides of (2.4), we have the

following theorem.

Theorem 2.3 For n ∈ Z+, we have

ζq
n∑
l=0

(
n

l

)
(2|λ)lTn−l,q,ζ(λ) + Tn(λ) =


2

ζq + 1
, if n = 0,

0, if n 6= 0.

By (2.2), we have

∞∑
n=0

ζqTn,q,ζ(x+ 2, λ)
tn

n!
+
∞∑
n=0

Tn,q,ζ(x, λ)
tn

n!

=
2ζq

ζq(1 + λt)2/λ + 1
(1 + λt)(x+2)/λ +

2

ζq(1 + λt)2/λ + 1
(1 + λt)x/λ

= 2(1 + λt)x/λ

= 2
∞∑
n=0

(x|λ)n
tn

n!
.

(2.5)

By comparing of the coefficients tn

n!
on the both sides of (2.5), we have the

following theorem.

Theorem 2.4 For n ∈ Z+, we have

ζqTn,q,ζ(x+ 2, λ) + Tn,q,ζ(x, λ) = 2(x|λ)n.
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By (1.1), we have

∞∑
m=0

(ζnqnTm,q,ζ(2n, λ) + Tm,q,ζ(λ))
tm

m!

=

∫
Zp

ζx+nq(x+n)(1 + λt)2(x+n)/λdµ−1(x) + (−1)n
∫
Zp

ζxqx(1 + λt)2x/λdµ−1(x)

= 2
n−1∑
l=0

(−1)n−1−lζ lql(1 + λt)2l/λ

=
∞∑
m=0

(
2
n−1∑
l=0

(−1)n−1−lζ lql(2l|λ)m

)
tm

m!
.

(2.6)
By comparing of the coefficients tn

n!
on the both sides of (2.6), we have the

following theorem.

Theorem 2.5 For m ∈ Z+, we have

ζnqnTm,q,ζ(2n, λ) + Tm,q,ζ(λ) = 2
n−1∑
l=0

(−1)n−1−lζ lql(2l|λ)m.

By (2.2), we get

∞∑
n=0

Tm,q−1,ζ−1(−x,−λ)
tn

n!
=

2

ζ−1q−1(1− λt)−2/λ + 1
(1− λt)x/λ

=
2ζq

(1− λt)2/λ + 1
(1− λt)(x+2)/λ

=
∞∑
n=0

(−1)nζqTm,q,ζ(x+ 2, λ)
tn

n!
.

(2.7)

By comparing of the coefficients tn

n!
on the both sides of (2.7), we have the

following theorem.

Theorem 2.6 For n ∈ Z+, we have

Tm,q−1,ζ−1(−x,−λ) = (−1)nζqTm,q,ζ(x+ 2, λ),

In particular,

Tm,q−1,ζ−1(−λ) = (−1)nζqTm,q,ζ(2, λ),
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For d ∈ N with d ≡ 1(mod 2), we have

∞∑
n=0

Tm,q,ζ(x, λ)
tn

n!
=

2

ζq(1 + λt)2/λ + 1
(1 + λt)x/λ

=
2

ζdqd(1 + λt)2d/λ + 1
(1 + λt)x/λ

d−1∑
l=0

(−1)lζ lql(1 + λt)2l/λ

=
∞∑
n=0

(
dn

d−1∑
l=0

(−1)lζ lqlTn,qd,ζd
(

2l + x

d
,
λ

d

))
tn

n!
.

(2.8)

By comparing coefficients of
tm

m!
in the above equation, we have the following

theorem:

Theorem 2.7 For d ∈ N with d ≡ 1(mod 2) and n ∈ Z+, we have

Tm,q,ζ(x, λ) = dn
d−1∑
l=0

(−1)lζ lqlTn,qd,ζd
(

2l + x

d
,
λ

d

)
.

In particular,

Tm,q,ζ(λ) = dn
d−1∑
l=0

(−1)lζ lqlTn,qd,ζd
(

2l

d
,
λ

d

)
.

From (2.2), we have

∞∑
n=0

Tn,q,ζ(x+ y, λ)
tn

n!
=

2

(1 + λt)2/λ + 1
(1 + λt)(x+y)/λ

=
2

ζq(1 + λt)2/λ + 1
(1 + λt)x/λ(1 + λt)y/λ

=

(
∞∑
n=0

Tm,q,ζ(x, λ)
tn

n!

)(
∞∑
n=0

(y|λ)n
tn

n!

)

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
Tl,q,ζ(x, λ)(y|λ)n−l

)
tn

n!
.

(2.9)

Therefore, by (2.9), we have the following theorem.

Theorem 2.8 For n ∈ Z+, we have

Tn,q,ζ(x+ y, λ) =
n∑
l=0

(
n

l

)
Tl,q,ζ(x, λ)(y|λ)n−l.
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From Theorem 2.8, we note that Tn,λ(x) is a Sheffer sequence. By replacing t

by
eλt − 1

λ
in (2.2), we obtain

2

ζqe2t + 1
ext =

∞∑
n=0

Tn,q,ζ(x, λ)

(
eλt − 1

λ

)n
1

n!

=
∞∑
n=0

Tn,q,ζ(x, λ)λ−n
∞∑
m=n

S2(m,n)λm
tm

m!

=
∞∑
m=0

(
m∑
n=0

Tn,q,ζ(x, λ)λm−nS2(m,n)

)
tm

m!
.

(2.10)

Thus, by (2.10) and (1.7), we have the following theorem.

Theorem 2.9 For n ∈ Z+, we have

Tm,q,ζ(x) =
m∑
n=0

λm−nTn,q,ζ(x, λ)S2(m,n).

By replacing t by log(1 + λt)1/λ in (1.7), we have

∞∑
n=0

Tn,q,ζ(x)
(
log(1 + λt)1/λ

)n 1

n!
=

2

ζq(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑
m=0

Tn,q,ζ(x, λ)
tm

m!
,

(2.11)

and
∞∑
n=0

Tn,q,ζ(x)
(
log(1 + λt)1/λ

)n 1

n!

=
∞∑
m=0

(
m∑
n=0

Tn,q,ζ(x)λm−nS1(m,n)

)
tm

m!
.

(2.12)

Thus, by (2.11) and (2.12), we have the following theorem.

Theorem 2.10 For n ∈ Z+, we have

Tn,q,ζ(x, λ) =
m∑
n=0

λm−nTn,q,ζ(x)S1(m,n).
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