Distinguishing Labelling of Partial Actions

Ram Parkash Sharma, Rajni Parmar and Meenakshi

Department of Mathematics, Himachal Pradesh University
Summerhill, Shimla, India

Copyright © 2015 Ram Parkash Sharma, Rajni Parmar and Meenakshi. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A generalization of G–sets, called partial (G, α)–sets, are the sets that admit an action of partial maps on their subsets. The (G, α)–sets are expressed, up to partial G–isomorphism, in terms of stabilizers of the elements of a partial G–transversal in [7]. The main aim of this paper is to give some applications of this theorem to partial (G, α)–sets and to distinguishing labelling of partial actions.

Mathematics Subject Classification: 16S35; 16W22

Keywords: Partial actions, Partial stabilizers and orbits, Labelling of partial actions.

1. Introduction

First, we recall the definition of a partial action on a set.

Definition. Let G be a group and X a set. A partial action of G on X is a pair $\alpha = \{\{D_g\}_{g \in G}, \{\alpha_g\}_{g \in G}\}$, where for each $g \in G$, D_g is a subset of X and $\alpha_g : D_g^{-1} \rightarrow D_g$ is a bijective map, satisfying the following three properties for each $g, h \in G$:

(i) $D_1 = X$, and $\alpha_1 = Id_X$, the identity map on X,
(ii) $\alpha_g(D_g^{-1} \cap D_h) = D_g \cap D_{gh}$,
(iii) $\alpha_g(\alpha_h(x)) = \alpha_{gh}(x)$ for $x \in D_h^{-1} \cap D_{h^{-1}g^{-1}}$.
If α is a partial action of G on X, then we say that X is a partial (G, α)–set.

In case of a ring, D_g's are taken to be ideals and maps to be ring homomorphisms. Partial actions on algebras were studied by M. Dokuchaev and R. Exel [2] M. Dokuchaev, M. Ferrero and A. Paques [3] and on semialgebras by Sharma et. al. [4,5,6,7]. In this paper, we introduce the concept of distinguishing numbers for partial actions and derive some results regarding these as applications of the structure theorem for partial G–sets.

2. Preliminaries

We recall some definitions and results from [7].

Let X be a partial (G, α)–set and $x \in X$. Then the set $G_x = \{ g \in G | x \in D_{g^{-1}} \}$ is a stabilizer of x in G. The stabilizer of an element of X becomes a subgroup of G similar to that in the group actions.

The set $O_G(x) = \{ \alpha_g^{-1}(x) | x \in D_g \}$ is the orbit of x in G. Two orbits in a partial (G, α)–set are either identical or disjoint. Therefore, if $y_1, y_2 \in O_G(x)$, then $O_G(y_1) = O_G(y_2)$. Let X' be a subset of X. Then X' is said to be a partial (G, α)–subset of X if $x \in X' \cap D_g$ implies $\alpha_g^{-1}(x)$. The orbit $O_G(x)$ is a partial (G, α)–subset of X.

Definition 2.1. Let X be a partial (G, α)–set and X' a partial (G, α')–set. Then a function $\beta : X \to X'$ is said to be a partial G–map if for $x \in D_{g^{-1}}$, $\beta(x) \in D_{g'^{-1}}$ and $\beta(\alpha_g(x)) = \alpha_g'(\beta(x))$. Further, X is said to be partial G–isomorphic to X' if β is a bijective G–map with $\beta(D_g) \supseteq D_{g'}$.

Remark. Let X be a partial (G, α)–set, which is partial G–isomorphic to a (G, α')–set X'. Then the image of a G–subset of X is a G–subset of X'.

Lemma 2.2. Let $G^x = \{ g^{-1} \in G | x \in D_g \}$, $x \in X$. Then the set $G^x/G_x = \{ g^{-1} G_x | x \in D_g \}$ becomes a partial G–set. Further, G^x/G_x is partial G–isomorphic to $O_G(x)$.

Theorem 2.3 (structure theorem). Let X be a partial (G, α)–set and S a partial G–transversal in X. Then X is G–isomorphic to $\bigcup_{s \in S} G^s/G_s$.

3. Applications

Let X be a partial (G, α)–set. Then X is a G–free set if $G_x = 1$ for all $x \in X$.

Lemma 3.1. A partial (G, α)–set is G–free if and only if it is a disjoint
union of copies of \(G^s, s \in S \).

Proof. From the Theorem 2.3, we have \(\cup_{s \in S} G^s/G_s \cong X \). We know that \(X \) is \((G, \alpha)\)-free partial \((G, \alpha)\)-set if and only if \(G_x = \{1\} \) for all \(x \in X \), which implies that \(\cup_{s \in S} G^s \cong X \).

Theorem 3.2. If \(\beta \) is a partial \((G, \alpha)\)-map from a partial \((G, \alpha)\)-set \(X \) to a partial \((G, \alpha')\)-set \(Y \), then \(G_x \subseteq G_{\beta(x)} \). The equality follows if \(\beta \) is injective.

Proof. Let \(g \in G_x \), then \(\alpha_g(x) = x \) for \(x \in D_{g^{-1}} \). As \(\beta \) is a partial \(G \)-map,

\[
\alpha'_g(\beta(x)) = \beta(\alpha_g(x)) = \beta(x) \quad \text{(because } x \in G_x),
\]

which implies that \(g \in G_{\beta(x)} \), proving that \(G_x \subseteq G_{\beta(x)} \) for \(x \in D_{g^{-1}} \). Let \(g \in G_{\beta(x)} \) for \(\beta(x) \in D_{g^{-1}} \). Then \(\alpha'_g(\beta(x)) = \beta(x) \). But \(\beta \) is a partial \((G, \alpha)\)-map, so again

\[
\beta(\alpha_g(x)) = \alpha'_g(\beta_g(x)) = \beta(x).
\]

As \(\beta \) is injective, \(\alpha_g(x) = x \), implying \(g \in G_x \). Therefore, \(G_{\beta(x)} \subseteq G_x \) for \(x \in D_{g^{-1}} \) and \(\beta(x) \in D_{g^{-1}} \).

Corollary 3.3. The only partial \((G, \alpha)\)-sets which have partial \((G, \alpha)\)-map to free partial \((G, \alpha)\)-sets are the free partial \((G, \alpha)\)-sets.

Proof. Let \(\beta : X \to Y \) be a partial \((G, \alpha)\)-map, where \(X \) is a partial \((G, \alpha)\)-set and \(Y \) is a free partial \((G, \alpha)\)-set. By Theorem 3.2, for \(x \in X, G_x \subseteq G_{\beta(x)} \). But \(Y \) is a free partial \((G, \alpha)\)-set. Therefore, \(G_{\beta(x)} = 1 \) for all \(\beta(x) \in Y \), which implies that \(G_x = 1 \) for all \(x \in X \). Hence, \(G_x \) is a free partial \((G, \alpha)\)-set.

Lemma 3.4. The intersection of two partial \((G, \alpha)\)-subsets of \(X \) is a partial \((G, \alpha)\)-subset of \(X \).

Proof. Let \(A \) and \(B \) be two partial \((G, \alpha)\)-subsets of \(X \) and \(x \in (A \cap B) \cap D_g \).

Then \(x \in A \cap D_g \) and \(B \cap D_g \). So \(\alpha_{g^{-1}}(x) \in A \cap B \). Hence \(A \cap B \) is a partial subset of \(X \).

Lemma 3.5. Let \(X \) be a partial \((G, \alpha)\)-set. Then \(P(X) \) can be made a partial \((G, \alpha)\)-set using the partial action \(\alpha \) of \(G \) on \(X \).

Proof. Define \(\bar{D}_g = \{ A \cap D_g \mid A \text{ is a partial } (G, \alpha)\text{-subset of } X \} \) and \(\bar{\alpha}_{g^{-1}} : \bar{D}_g \to \bar{D}_{g^{-1}} \) by \(\bar{\alpha}_{g^{-1}}(A \cap D_g) = \{ \alpha_{g^{-1}}(x) \mid x \in A \cap D_g \} \). It suffices to verify three properties of the Definition of partial \(G \)-set.

(i) To verify the first property of the definition, we define a map from \(\bar{\alpha}_1 : \bar{D}_1 \to \bar{D}_1 \) by \(\bar{\alpha}_1(T) = \{ \alpha_1(x) \mid x \in T \} = T \) where \(\bar{D}_1 = P(X) \) and \(T \in \bar{D}_1 \). Clearly \(\bar{\alpha}_1 \) is the identity map on \(\bar{D}_1 \).

(ii) To verify the second property of the definition, that is, \(\bar{\alpha}_{g^{-1}}(\bar{D}_g \cap \bar{D}_h) = \bar{D}_{g^{-1}} \cap \bar{D}_{h^{-1}} \).
Let $X' \in \bar{D}_g \cap \bar{D}_h$. That is, $X' \in \bar{D}_g$ and $X' \in \bar{D}_h$. Then $X' = A \cap D_g = B \cap D_h$, where A and B are the partial (G, α)–subsets of X. Therefore, for $x \in X'$, $\alpha_{g^{-1}}(x) \in \alpha_{g^{-1}}(X')$ implies that $x \in (A \cap B) \cap (D_g \cap D_h)$. So\
\[\alpha_{g^{-1}}(x) \in \alpha_{g^{-1}}(D_g \cap D_h) = D_{g^{-1}} \cap D_{g^{-1}h}. \] (1)
Also $x \in A \cap B$ and $A \cap B$ being a partial (G, α)–subset of X, implies $\alpha_{g^{-1}}(x) \in A \cap B$.

From (1) and (2), we get $\alpha_{g^{-1}}(x) \in ((A \cap B) \cap (D_{g^{-1}} \cap D_{g^{-1}h})), \text{ which implies,}$\
\[\alpha_{g^{-1}}(X') \subseteq \bar{D}_{g^{-1}} \cap \bar{D}_{g^{-1}h}, \] (3)

Conversely, let $X' \in \bar{D}_{g^{-1}} \cap \bar{D}_{g^{-1}h}$. Then $X' \in (A \cap B) \cap (D_{g^{-1}} \cap D_{g^{-1}h})$. Let $x \in X'$. Thus $x \in (A \cap B)$ and $(D_{g^{-1}} \cap D_{g^{-1}h})$, so that $y = \alpha_g(x) \in A \cap B$ (by Lemma 3.4), therefore\
y \in \alpha_g(D_{g^{-1}} \cap D_{g^{-1}h}) = D_g \cap D_h.

Let\
\[Y = \{ y | y = \alpha_g(x), x \in X' \} \subseteq (A \cap D_g) \cap (B \cap D_h) \in \bar{D}_g \cap \bar{D}_h. \]

By definition of $\alpha_{g^{-1}}$, we have\
\[\alpha_{g^{-1}}(Y) = \{ \alpha_{g^{-1}}(y), y \in Y \} = \{ x | x \in X' \} = X'. \] (iii) To verify (iii), we have to show\
\[(\alpha_{g^{-1}}(\alpha_{h^{-1}}(X'))) = \alpha_{g^{-1}}(X') \text{ for } X' \in \bar{D}_h \cap \bar{D}_h. \]

As $X' \in \bar{D}_h \cap \bar{D}_h$. Without loss of generality, there exists a partial (G, α)-subset A of X such that $X' = A \cap D_h \cap D_{hg}$. Let $x \in X' = A \cap D_h \cap D_{hg}$, then\
\[\alpha_{g^{-1}}(X') = \{ \alpha_{g^{-1}}(x) | x \in A \cap D_h \cap D_{hg} \}. \]

For $x \in A \cap D_h \cap D_{hg}$, we have $\alpha_{g^{-1}}(x) = \alpha_{g^{-1}}(\alpha_{h^{-1}}(x))$. So\
\[\alpha_{g^{-1}}(\alpha_{h^{-1}}(X')) = \alpha_{g^{-1}}(\{ \alpha_{h^{-1}}(x), x \in A \cap D_h \cap D_{hg} \} = \alpha_{g^{-1}}(Y), Y = \{ y | y = \alpha_{h^{-1}}(x) \text{ and } x \in X' \} = \{ \alpha_{g^{-1}}(y) | y \in Y \} = \{ y | y = \alpha_{h^{-1}}(x) \text{ and } x \in X' \} = \{ \alpha_{g^{-1}}(\alpha_{h^{-1}}(x)) | x \in X' \} = \{ \alpha_{g^{-1}}(x') | x \in X' \} = \alpha_{g^{-1}}(X'). \]

Hence, $P(X)$ is a partial (G, α)–set.
4. Distinguishing labelling of the partial actions

Following [1], we define

Definition 4.1. Let G be a group, X a (G, α)-set and α be a proper partial action of G on X. For a +ve integer r, an r-labelling $\phi : X \to \{1, 2, 3, 4, \ldots, r\}$ is said to be r-distinguishing with respect to the partial action α of G on X if for each $g \in G$, $\alpha_g \neq \alpha_1|_{D_g}$, there is an element $x \in D_g$ such that $\phi(x) \neq \phi(\alpha_g^{-1}(x))$.

Theorem 4.2. Let X be a proper partial (G, α)-set, $\bigcap_{g \in G} D_{g^{-1}} \neq \phi$ and $O_G(x) \subseteq \bigcap_{g \in G} D_{g^{-1}}$ for some $x \in X$. If G_x is normal, then $O_G(x)$ can be distinguished with two labels.

Proof. Define

$$\phi(y) = \begin{cases}
1, & \text{if } y = x \\
2, & \text{for all } y \neq x \in O_G(x)
\end{cases}$$

Suppose that for $g \in G$, α_g does not distinguish $O_G(x)$, so it must fix x, that is, $\alpha_g(x) = x$, for $x \in D_{g^{-1}}$, so $g \in G_x$. Let $x \neq y \in O_G(x)$. Then there must exist $x \neq z \in O_G(x)$ such that $\alpha_g(y) = z$. Thus for $y, z \in O_G(x)$, both not equal to x, there are $g_1, g_2 \in G$ both not equal to g such that $\alpha_{g_1}(y) = x, \alpha_{g_2}(z) = x$. Also $z = \alpha_{g_1}(y)$, which implies that $z = \alpha_g(\alpha_{g_1}^{-1}(x))$, that is, $\alpha_g(\alpha_{g_1}^{-1}(x)) = \alpha_{g_2}^{-1}(x)$. Since $x \in \bigcap_{g \in G} D_{g^{-1}}$, we have $\alpha_{g_2}^{-1}(x) = \alpha_{g_1}^{-1}(x)$. Further G_x is normal, and $g \in G_x$, we have $g_1 g_1^{-1} g_2^{-1} \in G_x$, that is, there exist $h \in G_x$ such that $g_1 g_2^{-1} = h$, implying $g_1^{-1} = g_2^{-1} h$ which together with $\alpha_{g_2}^{-1}(x) = \alpha_{g_1}^{-1}(x)$ implies that $\alpha_{g_1}^{-1}(x) = \alpha_{g_1}^{-1}(x) = \alpha_{g_1}^{-1}(x)$. So $\alpha_{g_2}^{-1}(x) = \alpha_g((\alpha_{g_1}^{-1}(x)) = \alpha_g(y) = z$ and $\alpha_{g_1}^{-1}(x) = \alpha_{g_1}^{-1}(\alpha_h(x)) = \alpha_{g_1}^{-1}(x) = y$. This proves that $y = z$ and hence $\alpha_g = \alpha_1$ on $O_G(x)$.

Theorem 4.3. Let X be a proper partial (G, α)-set. If X has a partial (G, α)-orbit $O = \{x_1, x_2, x_3, \ldots, x_s\}$, $x_1, x_2, x_3, \ldots, x_s \subseteq \bigcap_{g \in G} D_{g^{-1}}$ that can be distinguished with k labels and $\cap_{i=1}^s G_{x_i} = \{1\}$, then X can be distinguished with k labels.

Proof. If we label X in such a way that $O_G(x)$ is k-distinguishing, then for $g \in G, \alpha_g \neq \alpha_1$ will act non-trivially on the partial (G, α)-orbit, since $\cap_{i=1}^s G_{x_i} = \{1\}$. So the only α_g that stabilizes all x_i in O is α_1. This implies that X can be distinguished with k-labels.

Theorem 4.4. Let X be a proper partial (G, α)-set and $x_1, x_2, x_3, \ldots, x_t \in D_{g^{-1}}$ for all $g \in G$, are from t-different partial (G, α)-orbits with respective
partial stabilizer subgroups $G_{x_1}, G_{x_2}, G_{x_3}, \ldots, G_{x_t}$. If $\cap_{i=1}^{t} G_{x_i} = \{1\}$, then $D_G(X) = 2$.

Proof. Define the labeling ϕ as follows:

$$\phi(x) = \begin{cases}
1, & \text{if } x \in \{x_1, x_2, x_3, \ldots, x_t\} \\
2, & \text{otherwise}
\end{cases} \quad (1)$$

We want to show that for $g \in G, \alpha_g \neq \alpha_1$, there is at least one $x_i \in X \cap D_{g^{-1}}$ such that $\phi(\alpha_g(x)) \neq \phi(x)$. Since the intersection of the partial stabilizer subgroups of $x_1, x_2, x_3, \ldots, x_t$ is the identity, α_g must map at least one $x_i, 1 \leq i \leq t$, to another vertex in O_{x_i}, which by definition of ϕ is labelled 2. Thus X has been distinguished with two labels.

Theorem 4.5. Let a group $G = \{g_1 = e, g_2, \ldots, g_p\}$ of order p (prime) act partially on a set X. If the partial action of G on X is proper and non trivial for each $g \in G, g \neq 1, \alpha_g \neq \alpha_1|D_{g^{-1}}$. Then it is 2–distinguishable if and only if there exist $x_1, x_2, x_3, \ldots, x_p \in X$ with $x_i \in D_{g_i^{-1}}$ such that $O_G(x_i) \approx G_{x_i}$.

Proof. Define a labelling $\phi : X \mapsto \{1, 2\}$ by

$$\phi(x_i) = \begin{cases}
1, & i = 1, 2, 3, \ldots, p \\
2, & \text{otherwise}
\end{cases} \quad (2)$$

Let $g_i \in G$ such that $\alpha_g \neq \alpha_1$. Then $O_G(x_i) \approx G_{x_i}$, using Structure theorem, give that $\alpha_g(x_i) \neq x_i$. So $x_i \neq \alpha_g(x_i) \in O_G(x_i)$, is labelled by 2. Therefore, the partial action of G on X is 2–distinguishable. Conversely, suppose that partial action of G on X is 2–distinguishable. Then for each $g \in G$, there exists $x_i \in D_{g^{-1}}$ such that $\alpha_g(x_i) \neq x_i$. Therefore $G_{x_i} \neq G$. Since order of G is prime and G_{x_i} is a subgroup of G, therefore $G_{x_i} = \{e\}$ and by using Structure Theorem, we get $O_G(x_i) \approx G_{x_i}$.

References

http://dx.doi.org/10.1090/s0002-9947-04-03519-6

http://dx.doi.org/10.1016/j.jpaa.2005.11.009

http://dx.doi.org/10.12988/ija.2013.3555

Received: September 9, 2015; Published: October 12, 2015