Some Results on Cubic Residues

Dilek Namlı

Bahkeseir Üniversitesi Fen-Edebiyat Fakültesi
Matematik Bölümü
10145 Çağış Kampüsü , Balikesir, Turkey

Copyright © 2015 Dilek Namlı. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we examine the solubility of the cubic congruence \(x^3 \equiv a \pmod{p} \) where \(p \) is a rational prime and \(a \) and \(x \) are integers. Here, we give some results and examples related with the cubic residues.

Mathematics Subject Classification: 11A41, 11A15

Keywords: Rational prime, cubic residue, primitive root

1. INTRODUCTION

Let \(p \) be a rational prime and \(a \) be an integer. If there is an integer \(x \) such that \(x^3 \equiv a \pmod{p} \) then \(a \) is said to be a cubic residue in mod \(p \).

\[Z[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\} \text{ where } \omega = \frac{-1+\sqrt{-3}}{2}. \]
For \(p \in \mathbb{Z}[\omega] \), the norm of \(p \) is given by \(Np = p\overline{p} = a^2 - ab + b^2 \) where \(\overline{p} \) is the complex conjugate of \(p \). If \(\theta \in \mathbb{Z}[\omega] \), then the cubic residue character \(\left(\frac{\theta}{p} \right)_3 \) of \(\theta \) in modulo \(p \) is defined by

\[
\left\{ \begin{array}{cl}
0 & \text{if } p \mid \theta \\
\omega^i & \text{if } \theta^{(Np-1)/3} \equiv \omega^i \pmod{p}
\end{array} \right.
\]

where \(i \in \{0, 1, 2\} \).

Cubic residues have been studied by several authors in [1],[2],[3],[4] and [5].

In this paper, we obtain some results and examples related with the cubic residues.
2. Main Results

Theorem 1. Let \(p \) be a rational prime for which \(p \equiv 1 \pmod{3} \). Then the equivalence \(x^3 \equiv a \pmod{p} \) is solvable if and only if \(a^{(p-1)/3} \equiv 1 \pmod{p} \).

Proof. This theorem is the special case \(k = 3 \) of the Euler’s Criterion. \(\square \)

Theorem 2. If \(p \) is a rational prime and \(a \in \mathbb{Z} \), then \(\left(\frac{a^3}{p} \right) = 1 \).

Proof. We know that \(\left(\frac{a^3}{p} \right) = \left(\frac{a}{p} \right)^3 \). As \(\left(\frac{a}{p} \right) \) is equivalent to \(\omega \) or to \(\omega^2 \), we find
\[
\left(\frac{a^3}{p} \right) = \left(\frac{a}{p} \right)^3 = 1.
\]

□

Example 1. Let us consider whether \(9 \) is a cubic residue in mod 7 or not. Since
\[
\left(\frac{9}{7} \right)_3 = \left(\frac{2}{7} \right)_3 \equiv 2^{\frac{7-1}{3}} \equiv 2^2 \equiv 4,
\]
\(\omega^2 \equiv 4 \pmod{7} \). Thus \(\left(\frac{9}{7} \right)_3 \equiv \omega^2 \). Therefore \(9 \) is not a cubic residue in mod 7.

Example 2. We consider the equivalence \(x^3 \equiv 15 \pmod{7} \). Then, 15 is a cubic residue in mod 7. In other words, the equivalence \(x^3 \equiv 15 \pmod{7} \) is solvable. In fact, \(x = 1, x = \omega \) and \(x = \omega^2 \) are the roots of the equivalence \(x^3 \equiv 15 \equiv 1 \pmod{7} \). Since \(\omega = -1 + \sqrt{-3} \), we get the roots of this equivalence as \(x \equiv 1 \pmod{7}, x \equiv 4 \pmod{7} \) and \(x \equiv 2 \pmod{7} \).

Example 3. Is the equivalence \(x^3 \equiv 41 \pmod{73} \) solvable? Since
\[
\left(\frac{73}{41} \right)_3 \equiv 41^{\frac{73-1}{3}} \equiv 41^{24} \equiv (41^2)^{12} \equiv 2^{12} \equiv 8 \pmod{73},
\]
we obtain \(\omega \equiv 8 \pmod{73} \) and \(\left(\frac{73}{41} \right)_3 = \omega \). Therefore \(x^3 \equiv 41 \pmod{73} \) is unsolvable.

Theorem 3. If \(p \equiv 2 \pmod{3} \) is a rational prime and \(a \) is a positive integer such that \((a,p) = 1 \), then \(a \) in mod \(p \) is a cubic residue.

Proof. Let \(p \equiv 2 \pmod{3} \) be a prime and let \(a \) be a positive integer such that \((a,p) = 1 \). Since \(p \equiv 2 \pmod{3} \), we can write \(p = 3k + 2, k \in \mathbb{Z} \). In this case,
\[
Np = p \cdot p = (3k + 2)(3k + 2) = 9k^2 + 12k + 4
\]
and
\[
\frac{Np - 1}{3} = 3k^2 + 4k + 1.
\]
Some results on cubic residues

From \((a, p) = 1\) and the Fermat’s little theorem, we have
\[a^{p-1} = a^{3k+1} \equiv 1(p). \]

Thus
\[a^{(Np-1)/3} = a^{3k^2+4k+1} = a^{(3k+1)(3k+1)} \equiv (a^{(3k+1)})^{3k+1} \equiv 1^{3k+1} \equiv 1(p). \]

\[\square \]

Corollary 4. If \(p \equiv 2 \) \((3)\) is a rational prime, then there are exact \(p\) cubic residues in mod \(p\) different from each other. In other words, all elements of \(\mathbb{Z}_p\) are cubic residues.

Proof. Let \(p \equiv 2 \) \((3)\) be a rational prime and let \(g\) be a primitive root. Also let us choose \(a \in \{1, 2, ..., p-1\}\) and \(k \in \{0, 1, ..., p-2\}\) providing the equivalence
\[g^k \equiv a \ (p). \]

Since \((3, p-1) = 1\), there are integers \(x'\) and \(y'\) such that \(3x' + (p-1)y' = 1\).
If we take \(x = x'k\) and \(y = y'k\), then we can write as \(3x + (p-1)y = k\).

Since \(g^{p-1} \equiv 1 \ (p)\), we find
\[a \equiv g^k = g^{3x+(p-1)y} = (g^x)^3(g^{p-1})^y \equiv (g^x)^3 \ (p). \]

That is, \(a\) is a cube in mod \(p\). Since \(0 \equiv 0^3 \ (p)\), there are exact different \(p\) cubes in mod \(p\). \[\square \]

Example 4. Let \(p = 11\). Since \(0 \equiv 0^3 \ (11)\), \(1 \equiv 1^3 \ (11)\), \(2 \equiv 7^3 \ (11)\), \(3 \equiv 9^3 \ (11)\), \(4 \equiv 5^3 \ (11)\), \(5 \equiv 3^3 \ (11)\), \(6 \equiv 8^3 \ (11)\), \(7 \equiv 6^3 \ (11)\), \(8 \equiv 2^3 \ (11)\), \(9 \equiv 4^3 \ (11)\), \(10 \equiv 4^3 \ (11)\), and \(11 \equiv 10^3 \ (11)\), all numbers in \(\mathbb{Z}_{11}\) are cubic residues.

Theorem 5. If \(p \equiv 1(3)\) is a rational prime, then the number of different cubic residues in mod \(p\) is \(\frac{p+2}{3}\).

Proof. Let \(p \equiv 1(3)\) be a rational prime. For every \(k\) element in \(\{3, 6, 9, ..., p-1\}\),
\[g^k = g^{3t} = (g^t)^3 \]
is a cube where \(g\) is a primitive root and \(t \in \mathbb{Z}\). Here all these \(g^k\)’s are different.
Then, there are at least \(\frac{p-1}{3}\) nonzero cubes in mod \(p\).

On the other hand, each cube is the form \(a \equiv b^3 \ (p)\). From \(p \equiv 1(3)\) and the Fermat’s little theorem,
\[a^{(p-1)/3} \equiv b^{p-1} \equiv 1 \ (p). \]

By the Lagrange’s Theorem for polynomials, there is the most \(\frac{p-1}{3}\) root of the equivalence
\[a^{(p-1)/3} \equiv b^{p-1} \equiv 1 \ (p), \]
that is, \(\frac{p-1}{3}\) is an upper bound for the total number of cubes in mod \(p\). Then there are exact \(\frac{p-1}{3}\) non-zero cubes. When counting the zero, then there are \(\frac{p-1}{3} + 1 = \frac{p+2}{3}\) cubes in mod \(p\). \[\square \]
Theorem 6. If p is an odd prime number then $-a \equiv a \pmod{p}$ if and only if $a \equiv 0 \pmod{p}$.

Proof. Since $(2, p) = 1$, we get

$$a \equiv -a \pmod{p} \iff 2a \equiv 0 \pmod{p} \iff a \equiv 0 \pmod{p}.$$

\[\square \]

Corollary 7. If p is an odd prime number then cubic residues in \mathbb{Z}_p are

$$0, 1, 2, \cdots, \left(\frac{p-1}{3}\right)^3, \left(\frac{p+1}{2}\right)^3, \cdots, (p-1)^3 \equiv -1.$$

Corollary 8. Let p be an odd prime number. An integer a is a cubic residue in \mathbb{Z}_p if and only if $-a$ is a cubic residue in \mathbb{Z}_p.

Proof. If a is a solution of $x^3 \equiv k \pmod{p}$ then $a^3 \equiv k \pmod{p}$. Since

$$(-a)^3 = -a^3 \equiv -k \pmod{p} \iff a^3 \equiv k \pmod{p},$$

$-a$ is also a solution of $x^3 \equiv k \pmod{p}$. \[\square \]

Theorem 9. Let $p \equiv 2 \pmod{3}$ be a prime such that $p \neq 2$. The sum of cubic residues providing the equivalence $x^3 \equiv k \pmod{p}$ is equivalent to zero in mod p.

Proof. Let $p \equiv 2 \pmod{3}$ be a prime. From the Corollary 2.4, all cubic residues are different and these are $0, 1, 2, \cdots, p-1$. Their sum is

$$0 + 1 + 2 + \cdots + p-1 = \frac{p(p-1)}{2}.$$

As p is prime and $p \neq 2$, $p-1$ is an even number, that is, $\frac{p-1}{2} \in \mathbb{Z}$. Then, we find

$$0 + 1 + 2 + \cdots + p-1 = \frac{p-1}{2}.p \equiv 0 \pmod{p}.$$

\[\square \]

Theorem 10. Let $p \equiv 1 \pmod{3}$ be a prime. The sum of the cubic residues providing the equivalence of $x^3 \equiv a \pmod{p}$ is equivalent to zero in mod p.

Proof. Let $p \equiv 1 \pmod{3}$ be a prime. From the Theorem 2.5, there are $\frac{p+2}{3}$ different cubic residues.

If $p \equiv 1 \pmod{3}$ then we can write $p = 3k + 1$, $k \in \mathbb{Z}$. As p is a prime, k is an even number. As $\frac{p+2}{3} = k + 1$, $\frac{p+2}{3}$ is an odd number.

One of the cubic residues is zero. Let $a_0 = 0$. Then, there are $\frac{p+2}{3} - 1 = \frac{p-1}{3}$ different cubic residues. Also, from the Corollary 2.8, if a is a cubic residue in \mathbb{Z}_p, then $-a$ is a cubic residue in \mathbb{Z}_p too. In this case, the sum of the cubic residues is

$$a_0 + a_1 + \cdots + a_{\frac{p-1}{3}} = a_0 + (a_1 + \cdots + a_{\frac{p-1}{6}}) + (-a_1 - \cdots - a_{\frac{p-1}{6}}) \equiv 0 \pmod{p}.$$

\[\square \]
Theorem 11. If one of solutions of the equivalence \(x^3 \equiv a \ (m) \) is \(x \), then the others are \(x\omega \) and \(x\omega^2 \).

Proof. If \(a = 1 \) then, we know that the solutions of \(x^3 \equiv 1 \ (m) \) are
\[
x = 1, \ x\omega = 1.\omega \text{ and } x\omega^2 = 1.\omega^2.
\]
If \(a \neq 1 \) and if one of the solutions of \(x^3 \equiv a \ (m) \) is \(x \), then
\[
(x\omega)^3 = x^3\omega^3 \equiv x^3 \equiv a \ (m),
\]
and
\[
(x\omega^2)^3 = x^3\omega^6 \equiv x^3 \equiv a \ (m).
\]
\[\Box\]

Corollary 12. The sum of solutions of the equivalence \(x^3 \equiv a \ (m) \) is equivalent to zero in mod \(m \).

Proof. From the Theorem 2.10, we know that the solutions of the equivalence \(x^3 \equiv a \ (m) \) are \(x, \ x\omega \) and \(x\omega^2 \). Then we have
\[
x + x\omega + x\omega^2 = x + x\omega + x(-1 - \omega) = 0.
\]
\[\Box\]

References

Received: May 27, 2015; Published: June 23, 2015