Some Results About Very Good Homomorphisms between Hypergroups\(^1\)

Jianguo Chen\(^2\), Guoxiang Wei\(^3\), Huaguo Shi\(^3\) and Fengqing Li\(^3,4\)

\(^2\) Chongqing No. 18 High School, Chongqing 400020, P.R. China
\(^3\) Sichuan Vocational and Technical College, Sichuan 629000, P.R. China
\(^4\) Corresponding author

Copyright © 2015 Jianguo Chen, Guoxiang Wei, Huaguo Shi and Fengqing Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(f \) be a surjective very good homomorphism from a hypergroup \(H \) to a hypergroup \(H' \). In this paper we prove first that if \(H' \) has a scalar identity \(\varepsilon' \) and \(A = f^{-1}(\varepsilon') \), then \(H/A \cong H' \). Next, a series of results about hypergroups corresponding to that of groups are obtained by foregoing result.

Mathematics Subject Classification: 20N20

Keywords: Hypergroups, Normal sub-hypergroups, Invertible sub-hypergroups, Very good homomorphism

1 Introduction

The concept of a hypergroup which is based on the notion of hyperoperation was introduced by Marty in [4] and studied extensively by many mathematicians. Hypergroup theory extends some well-known results in group theory and introduces new topics leading to a wide variety of applications, as well as to broadening of the fields of investigation. Surveys of the theory can be

\(^1\)This work is supported by Scientific Research Foundation of Sichuan Provincial Education Department(No:14ZA0314) and Scientific Research Foundation of Sichuan Provincial Education Department(No:15ZA0345).
found in the books of Corsini [1], Davvaz and Leoreanu-Fotea [3], Corsini and
Leoreanu [2].

A nonempty subset A of a hypergroup H is called a sub-hypergroup if it is a hypergroup. An element ε of H is called an identity element if, for all $x \in H$, $x \in xe \cap ex$. We denote with x/y the set of \{z|x \in yz\} and denote with $y \setminus x$ the set of \{z|x \in yz\}. A function $f : H \to H'$ is called a homomorphism if $f(ab) \subseteq f(a) \circ f(b)$ for all a and b in H. We say that f is a good homomorphism if for all a and b in H, $f(ab) = f(a) \circ f(b)$. We say that f is a very good homomorphism if f is a surjective good homomorphism and for all a and b in H, $f(a/b) = f(a) / f(b)$ and $f(a \setminus b) = f(a) \setminus f(b)$.

In this paper, we extends Homomorphism Theorem, Corresponding Theorem of subgroups in group theory and get a series of analogous results in hypergroup theory.

2 Main results

In the first place, we introduce some terms needed in this paper which are extended from group theory.

Definition 2.1 ([1]62 Definition) Let A be a sub-hypergroup of a hypergroup H, if for every $x \in H$, $xA = Ax$, then A is normal sub-hypergroup in H.

Definition 2.2 ([1]35 Definition)Let A be a sub-hypergroup of a hypergroup H, if for every $(x, y) \in H \times H$, $y \in xA$ implies $x \in yA$ and $y \in Ax$ implies $x \in Ay$, then A is invertible sub-hypergroup in H.

Definition 2.3 ([1]21 Definition)Let H and H' be hypergroups, f be a surjective function from H to H'. We call f a very good homomorphism if for every $(x, y) \in H \times H$, $f(xy) = f(x)f(y)$, $f(x/y) = f(x)/f(y)$ and $f(x \setminus y) = f(x) \setminus f(y)$ are valid.

Definition 2.4 Let H and H' be hypergroups. If f is a bijective from H to H' such that $f(xy) = f(x)f(y)$ for every $(x, y) \in H \times H$, then H is said to be isomorphic to H', in which case we may write $H \cong H'$.

Now we present some new results about above concepts.

Lemma 2.1 Let H and H' be hypergroups, f be a very good homomorphism from H to H'. Then

1. A' is a normal sub-hypergroup of H' if and only if $f^{-1}(A')$ is a normal sub-hypergroup of H.

2. A' is an invertible sub-hypergroup of H' if and only if $f^{-1}(A')$ is an invertible sub-hypergroup of H.
Results about very good homomorphisms between hypergroups

Proof: Let A' be a sub-hypergroup of H' and $A = f^{-1}(A')$.

Since $f(A \circ A) = f(A) \circ f(A) = A'$, so $A \circ A \subseteq A$. Let $(x, y) \in A \times A$. Then there is a $z' \in A'$ such that $f(y) \in z'f(x)$, so $z' \in f(y)/f(x) = f(y/x)$. Hence there is a $z \in y/x$ such that $f(z) = z'$, it implies that $z \in A$, so $y \in Ax$. Similarly, we can get $y \in xA$ too. Thus A is a sub-hypergroup of H.

Let A' be a normal sub-hypergroup of H', $(x, y) \in H \times H$ and $y \in Ax$. Then $f(y) \in f(Ax) = f(A)f(x) = f(x)f(A) = f(x)A'$, so $f(x)f(y) \cap A' \neq \phi$. Since $f(x)f(y) = f(x/y)$, there exists a $(z, z') \in x/y \times A'$ such that $f(z) = z'$. Hence $z \in A$. Thus $y \in xz \subseteq xA$, and then we have $Ax \subseteq xA$. Similarly, we can get $xA \subseteq Ax$. That is to say A is a normal sub-hypergroup of H.

Now, set A' be an invertible sub-hypergroup of H' and $(x, y) \in H \times H$. If $y \in Ax$, then $f(y) \in f(Ax) = f(A)f(x)$, Since A' is invertible, we have that $f(x) \in A'f(y)$. Hence $f(x)/f(y) \cap A' \neq \phi$. Since $f(x)/f(y) = f(x/y)$, there exists a $(z, z') \in x/y \times A'$ such that $f(z) = z'$. Hence $x \in zy \subseteq Ay$. Similarly, we can prove that if $y \in xA$, then $x \in yA$. That is, A is invertible in H.

On the other hand, let f be surjective good homomorphism. It is easy to prove that B is a sub-hypergroup (normal sub-hypergroup) of H implies that $f(B)$ is a sub-hypergroup (normal sub-hypergroup) of H'. If f is a surjective very good homomorphism and B is an invertible sub-hypergroup of H, then we can easily prove that $f(B)$ is an invertible sub-hypergroup of H' too. Thus if $f^{-1}(A')$ is a sub-hypergroup (normal sub-hypergroup or invertible sub-hypergroup) of H, we have that A' is a sub-hypergroup (normal sub-hypergroup or invertible sub-hypergroup) of H'. The proof of the Lemma is now complete.

Lemma 2.2 Let H be a hypergroup, and let A be a normal and invertible sub-hypergroup of H. Set $H/A = \{Ax | x \in H\}$ equipped with the operation: $Ax \circ Ay = \{Az | z \in xy\}$. Then H/A is a hypergroup with a scalar identity A, and $f(x) = Ax$ is a very good homomorphism from H to H/A.

Proof: Obviously, H/A is a hypergroup with a scalar identity A and f is a surjective good homomorphism. So we need only to prove that f is a very good homomorphism.

If $Az \in f(x/y)$, then there is a $z_1 \in x/y$ such that $Az = Az_1$. Since $z_1 \in x/y$, we have $x \in z_1y$, $Ax \subseteq Az_1y$. Hence $Ax \in Az_1 \circ Ay = Az \circ Ay$, and $Az \in Ax/Ay = f(x)/f(y)$. Therefore $f(x/y) \subseteq f(x)/f(y)$.

If $Az \in Ax/Ay$, then $Ax \in Az \circ Ay$. Hence there is a $x_1 \in zy$, such that $Ax = Ax_1$. As $x_1 \in zy$, we have $Ax_1 \subseteq Az_1y$ and $Ax \subseteq Az_1y$. Since A is invertible, so $x \in Az_1y$. Hence there is a $z_1 \in Az$ such that $x \in z_1y$. Thus we get $z_1 \in x/y$ and $Az_1 \in f(x/y)$. On the other hand, since $z_1 \in Az$, we have $Az = Az_1$, that is $Az \in f(x/y)$ and hence $f(x)/f(y) \subseteq f(x/y)$. This implies that $f(x/y) = f(x)/f(y)$.
By the same argument we have that \(f(x \setminus y) = f(x) \setminus f(y) \). Therefore \(f \) is a very good homomorphism from \(H \) to \(H/A \).

We now can extend the Homomorphism Theorem of subgroups in group theory to hypergroup theory.

Theorem 2.3 Let \(H \) and \(H' \) be hypergroups, and let \(f \) be a very good homomorphism from \(H \) to \(H' \). If \(H' \) has a scalar identity \(\varepsilon' \), and \(A = f^{-1}(\varepsilon') \), then \(H/A \cong H' \).

Proof: It is easy to see that \(\varepsilon' \) is a normal and invertible sub-hypergroup of \(H' \). By Lemma 2.1, \(A \) is a normal and invertible sub-hypergroup of \(H \). By Lemma 2.2, \(H/A \) is a hypergroup. Define a mapping \(g : H/A \rightarrow H' \) by \(g(Ax) = f(x) \). Obviously, this is a well-defined mapping and \(g(Ax \circ Ay) = g(Ax)g(Ay) \). It is remained to prove that \(g \) is an injection.

Let \(g(Ax) = g(Ay) \). Then \(f(x) = f(y) = \varepsilon'f(y) \), and hence \(\varepsilon' \in f(x)/f(y) = f(x/y) \). Therefore there is a \(z \in x/y \) such that \(f(z) = \varepsilon' \). This implies that \(x \in zy \subseteq Ay \). Now \(A \) is invertible, we have \(Ax = Ay \). That is, \(g \) is an injection.

Lemma 2.4 Let \(H \) and \(H' \) and \(H'' \) be hypergroups, if \(f_1 \) is a very good homomorphism from \(H \) to \(H' \), \(f_2 \) is very good homomorphism from \(H' \) to \(H'' \), then \(f_2f_1 \) is a very good homomorphism from \(H \) to \(H'' \).

Proof. For any \((x, y) \in H \times H \), we have

\[
f_2f_1(xy) = f_2(f_1(xy)) = f_2(f_1(x)f_1(y)) = f_2(f_1(x))f_2(f_1(y)) = f_2f_1(x)f_2f_1(y).
\]

Similarly,

\[
f_2f_1(x/y) = f_2(f_1(x)/f_1(y)) = f_2f_1(x)/f_2f_1(y),
\]

and

\[
f_2f_1(x \setminus y) = f_2f_1(x) \setminus f_2f_1(y).
\]

Hence \(f_2f_1 \) is a very good homomorphism from \(H \) to \(H'' \).

By Lemma 2.2, Theorem 2.3 and Lemma 2.4, we can get immediately the following two Corollaries:

Corollary 2.1 Let \(H \) and \(H' \) be hypergroups, \(f \) be a very good homomorphism from \(H \) to \(H' \). If \(A' \) is a normal and invertible sub-hypergroup of \(H' \), \(A = f^{-1}(A') \), then \(H/A \cong H'/A' \).

Corollary 2.2 Let \(H \) be a hypergroup. If \(A \) and \(B \) are normal and invertible sub-hypergroups of \(H \) and \(A \subseteq B \), then \((H/A)/(B/A) \cong H/B \).
Now we extend the Corresponding Theorem of subgroups in group theory to hypergroup theory. For this reason, we need the following Lemma:

Lemma 2.5 Let H and H' be hypergroups, and let f be a very good homomorphism from H to H'. Suppose that H' has a scalar identity ε', $A = f^{-1}(\varepsilon')$, A_1 and A_2 are sub-hypergroups of H. If $A \subseteq A_1$, $A \subseteq A_2$ and $f(A_1) = f(A_2)$, then $A_1 = A_2$.

Proof. If $x \in A_1$, then there is a $y \in A_2$ such that $f(x) = f(y) = f(x/y)$, so there is a $z \in x/y$ satisfying $f(z) = \varepsilon$. Therefore we get $x \in zy \subseteq Ay \subseteq A_2$, which implies that $A_1 \subseteq A_2$. By the same argument, we have $A_2 \subseteq A_1$. Thus $A_1 = A_2$.

By Lemma 2.1, and Lemma 2.5, we can get the following Theorem:

Theorem 2.6 Let H and H' be hypergroups, and let f be a very good homomorphism from H to H'. Suppose that H' has a scalar identity ε', $A = f^{-1}(\varepsilon')$. Write $G = \{B | A \subseteq B, B$ is a sub-hypergroup(normal sub-hypergroup or invertible sub-hypergroup) of $H\}$, and $G' = \{B' | \varepsilon' \in B', B'$ is a sub-hypergroup(normal sub-hypergroup or invertible sub-hypergroup) of $H'\}$. Then f is a bijective from G to G'.

By Lemma 2.2, Lemma 2.4 and Theorem 2.6, we can get the following Corollary:

Corollary 2.3 Let H and H' be hypergroups, and let f be a very good homomorphism from H to H'. Suppose that A' is a normal and invertible sub-hypergroup of H', $A = f^{-1}(A')$. Write $G = \{B | A \subseteq B, B$ is a sub-hypergroup(normal sub-hypergroup or invertible sub-hypergroup) of $H\}$, and $G' = \{B' | A' \subseteq B', B'$ is a sub-hypergroup(normal sub-hypergroup or invertible sub-hypergroup) of $H'\}$. Then f is a bijective from G to G'.

References

Received: January 2, 2015; Published: February 1, 2015