On the Regular Elements of a Class of Commutative Completely Primary Finite Rings

Owino Maurice Oduor

Department of Mathematics and Computer Science
University of Kabianga
P.O. Box 2030-20200, Kericho, Kenya

Musoga Christopher

Department of Mathematics
Masinde Muliro University of Science and Technology
P.O. Box 190-50100, Kakamega, Kenya

Abstract

In this paper, a class of completely primary finite rings of characteristic p^k has been constructed. The objective is to investigate the inverses of regular elements in the class of rings.

Mathematics Subject Classification: Primary 13M05, 16P10, 16U60, Secondary 13E10, 16N20

Keywords: Completely primary finite rings, Regular elements, Von-Neumann inverses

1 Introduction

The classification of finite rings still remains elusive. Every element in a finite ring with identity is either a zero divisor or a unit. It is well known that every commutative finite ring is a direct sum of completely primary finite rings. The
study on the structures of units and zero divisors has not been exhausted. An element \(a \in R \) is said to be Von-Neumann regular if there exists an element \(b \in R \) such that \(a = ab \), where \(b \) is the Von-Neumann Inverse of \(a \). See e.g [3]. An element of \(R \) is regular if it is either a unit or zero. This article investigates the inverses of regular elements in \(R \).

Unless otherwise stated, \(J(R) \) shall denote the Jacobson radical of a completely primary finite ring \(R \). The set of all the regular elements in \(R \) shall be denoted by \(V(R) \). The rest of the notations used in this article are standard and reference may be made to [1], [2], [4] and [6].

2 Regular elements of Galois Rings

Let \(R \) be a completely primary finite ring with a unique maximal ideal \(J \). Then \(R \) is of order \(p^m \); \(J \) is the Jacobson radical of \(R \); \(J^m = (0) \) where \(m \leq n \) and the residue field \(R/J \cong F_{p^m} \) is a finite field for some prime integer \(p \) and positive integer \(r \). The characteristic of \(R \) is \(p^k \) where \(k \) is an integer such that \(1 \leq k \leq m \). If \(k = m = n \), then \(R = \mathbb{Z}_{p^n}[b] \) where \(b \) is an element of \(R \) of multiplicative order \(p^r - 1 \); \(J = pR \) and \(\text{Aut}(R) \cong \text{Aut}(R/pR) \). Such a ring is called a Galois ring, denoted by \(GR(p^r, p^k) \). Now, \(GR(p^r, p^k) = \mathbb{Z}_{p^k}[x]/(f) \) where \(f \in \mathbb{Z}_{p^k}[x] \) is a monic polynomial of degree \(r \) whose image in \(\mathbb{Z}_{p^r}[x] \) is irreducible.

The results on trivial Galois rings can be obtained from [3]. The proofs have been made more elaborate. Consider the trivial Galois ring \(GR(p^k, p^k) = \mathbb{Z}_{p^k} \). Then for each natural number \(p^k \), the function \(\varphi(p^k) \) is the number of integers \(x \) such that \(1 \leq x \leq p^k \) and \(\gcd(x, p^k) = 1 \). \(\varphi(p^k) \) is the number of distinct primes dividing \(p^k \). \(\tau(p^k) \) is the number of divisors of \(p^k \) and \(\sigma(p^k) \) is the sum of the divisors of \(p^k \).

Proposition 1 (See [3]). Let \(p \) and \(k \) be a prime and a positive integer respectively. An element \(a \) is regular in \(GR(p^k, p^k) \) iff \(a^{p^k - p^{k-1} + 1} \equiv a \pmod{p^k} \)

Proof. Suppose \(a \) is a regular element in \(\mathbb{Z}_{p^k} \). If \(a \equiv 0 \pmod{p^k} \), then \(a^{p^k - p^{k-1} + 1} \equiv a \pmod{p^k} \). Now, let \(a \) be a unit \(\pmod{p^k} \). Using Euler’s theorem, \(a^{p^k - p^{k-1}} \equiv 1 \pmod{p^k} \). Therefore \(a^{p^k - p^{k-1} + 1} \equiv a \pmod{p^k} \). Conversely, \(a \equiv a^{p^k - p^{k-1} + 1} \equiv a^2 a^{p^k - p^{k-1} - 1} \pmod{p^k} \), so that \(a \) is a regular element.

Corollary 1 (See [3]). Let \(0 \neq a \) be a regular element in \(GR(p^k, p^k) \), then \(a^{p^k - p^{k-1}} \) is a Von-Neumann inverse of \(a \) in \(GR(p^k, p^k) \).

Proposition 2 (See [3]). Let \(R = GR(p^k, p^k) \). Then \(V(p^k) = p^k - p^{k-1} + 1 = \varphi(p^k) + 1 = p^k(1 - \frac{1}{p} + \frac{1}{p^2}) \)
Proof. Since $GR(p^k, p^k)$ is local, every regular element in the ring is either zero or a unit. Now, the number of all the units of the ring is $p^k - p^{k-1}$ and the zero element in the ring is unique. Thus the result easily follows.

Proposition 3 (See [3]). Let p and k be a prime and a positive integer respectively. Then $V(p^k) = \sum_{t|p^k} \varphi(t)$ and $V(p^k)/\varphi(p^k) = \sum_{t|p^k} 1/\varphi(t)$.

Proof. In $GR(P^k, p^k)$, the unitary divisors are 1 and $p^k \equiv 0 \pmod{p^k}$. By definition, $\varphi(1) = 1$. But $V(p^k) = p^k - p^{k-1} + 1 = \varphi(p^k) + 1 = \varphi(p^k) + \varphi(1)$.

Further, $\frac{V(p^k)}{\varphi(p^k)} = \frac{p^k - p^{k-1} + 1}{p^k - p^{k-1}} = 1 + \frac{1}{p^k - p^{k-1}} = \frac{1}{\varphi(1)} + \frac{1}{\varphi(p^k)}$.

The summatory function $F(p^k)$ is given by $F(p^k) = \sum_{t|p^k} V(t) = \sum_{i=0}^{k} V(p^i) = V(1) + \sum_{i=1}^{k} V(p^i)$

$$= V(1) + \sum_{i=1}^{k} [(p^i - p^{i-1}) + 1]$$

$$= 1 + (p + p^2 + \ldots + p^k) - (1 + p + p^2 + \ldots + p^{k-1}) + k$$

$$= p^k + k.$$

Theorem 2 (See [3]). Let $R = GR(p^k, p^k)$, then $\sigma(p^k) + \varphi(p^k) \leq p^k \tau(p^k)$.

Proof. Let $k = 1$, then $\sigma(p) = p + 1$ and $\varphi(p) = p - 1$ so that $\sigma(p) + \varphi(p) = 2p$. Since p has only two divisors, that is 1 and p, then $2p = p\tau(p)$. Thus $\sigma(p) + \varphi(p) = p\tau(p)$.

Now, suppose $k > 1$, then $\sigma(p^k) = \sum_{i=0}^{k} p^i$ and $\varphi(p^k) = p^k - p^{k-1}$, so that $\sigma(p^k) + \varphi(p^k) = 1 + p + \ldots + p^k + p^k - p^{k-1}$

$$= 2p^k + p^{k-2} + \ldots + p + 1 < (k + 1)p^k.$$

But p^k has $(k + 1)$ divisors, so that $(k + 1)p^k = p^k \tau(p^k)$.

Thus $\sigma(p^k) + \varphi(p^k) < p^k \tau(p^k)$.

Lemma 1 (See [3]). Let $R = GR(p, p) = F_p$. Then $\sigma(p) + V(p) > p\tau(p)$

Proof. Clearly $\sigma(p) = p + 1$ and $V(p) = p$.

So $\sigma(p) + V(p) = 2p + 1 > 2p = p\tau(p)$.

Theorem 3 (See [3]). Let $R = GR(p^k, p^k)$. If $k > 1$, then $\sigma(p^k) + V(p^k) < p^k \tau(p^k)$
Proof. Clearly $1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^k} < k = (k + 1) - 1 = \tau(p^k) - 1$
So $\sigma(p^k) = \frac{1 + p + p^2 + \ldots + p^k}{p^k} < \tau(p^k) - 1$.
Now, $\sigma(p^k) < p^k(\tau(p^k) - 1) = p^k\tau(p^k) - p^k$.
Since $V(p^k) < p^k$, we obtain $\sigma(p^k) < p^k\tau(p^k) - V(p^k)$.

Lemma 2. Let $R_0 = GR(p^r, p)$ for some prime integer p and positive integer r. Then $V(R_0) = R_0$.

Proof. Clearly $V(R_0) \subseteq R_0$ because every element in $V(R_0)$ belongs to R_0. On the other hand, let $a \in R_0$. Then a is either a unit or zero. Thus $a \in V(R_0)$. So $R_0 \subseteq V(R_0)$. This completes the proof.

We now characterize the VonNeumann inverses of regular elements in $GR(p^r, p)$.

Lemma 3. Let $R_0 = GR(p^r, p)$, for some prime integer p and positive integer r. If $a \neq 0$ is regular in R_0, then $a^{-1} \equiv a^{(V(p))r-2}(\text{mod } p)$.

Proof. Clearly $V(p) = p$. Since R_0 is a field of order p^r, every nonzero element in R_0 is invertible. Let $0 \neq a \in R_0$, then by Euler’s theorem, $a^{p^r-1} \equiv 1(\text{mod } p)$.

Multiplying both sides by a^{-1}, we obtain $a^{p^r-2} \equiv a^{-1}(\text{mod } p)$.

Since \equiv is symmetric, the result follows.

Lemma 4. Let $R = GR(p^{kr}, p^k)$ where p is a prime integer, k and r are positive integers. Then $V(R) = R^* \cup \{0\}$ and $|V(R)| = p^{(k-1)r}(p^r-1) + 1$

Proof. Let $a \in R^* \cup \{0\}$, then a is either a unit or zero. Since R is local, a is a regular element, that is $a \in V(R)$. So $R^* \cup \{0\} \subseteq V(R)$. On the other hand, let $a \in V(R)$, then there exists an element $b \in R$ such that $a = a^2b$, that is $a(1 - ab) = 0$. If a is a unit, then $1 - ab = 0$, so that $ab = 1$ and b is the VonNeumann inverse of a. If a is a nonunit, then ab is a nonunit. But $ab = a^2b^2 = aabb = abab = (ab)^2$ because R is commutative. So $ab = (ab)^2$.

$\Rightarrow ab(1 - ab) = 0$. Since $1 - ab$ is a unit, $ab = 0$. so that $a = 0$ because b is its VonNeumann inverse.

Thus $V(R) \subseteq R^* \cup \{0\}$. Now $R^* = (R^*/1 + J) \times 1 + J \cong \mathbb{Z}_{p^r-1} \times 1 + J$. But $|1 + J| = |J| = |pGR(p^{kr}, p^k)| = p^{(k-1)r}$. Therefore $|R^*| = (p^r-1)(p^{(k-1)r})$.

Since $V(R) = R^* \cup \{0\}$, the last statement easily follows.

Proposition 4. Let $R_0 = GR(p^{kr}, p^k)$. Suppose a is a regular element in R_0, then its VonNeumann inverse is given as $a^{-1} \equiv a^{p^{(k-1)r}(p^r-1)-1}(\text{mod } p^k)$.

Proof. If a is regular in R, then $a \equiv a^{R^*+1} \equiv a^{p^{(k-1)r}(p^r-1)+1} \equiv a^2a^{p^{(k-1)r}(p^r-1)-1}(\text{mod } p^k)$. So that $a^{-1} \equiv a^{p^{(k-1)r}(p^r-1)-1}(\text{mod } p^k)$.

3 Regular elements of completely primary finite rings of characteristic p^k

Let R_0 be the Galois ring of the form $GR(p^{kr}, p^k)$. For each $i = 1, \ldots, h$, let $u_i \in J(R)$ such that U is h-dimensional R_0-module generated by u_1, \ldots, u_h so that $R = R_0 \oplus U = R_0 \oplus \sum_{i=1}^{h} (R_0/pR_0)^i$ is an additive group. On this group, define multiplication as follows:

$$(r_0, r_1, r_2, \ldots, r_h)(s_0, s_1, s_2, \ldots, s_h) = (r_0 s_0, r_0 s_1 + r_1 s_0, r_0 s_2 + r_2 s_0, \ldots, r_0 s_h + r_h s_0).$$

It is well known that this multiplication turns R into a completely primary finite ring with identity $(1, 0, 0, \ldots, 0)$. The structure of the group of units of this ring is well known and reference may be made to [5].

Theorem 4. Let R be the ring constructed in this section, it’s regular elements are classified as follows;

(i) If $\text{char } R = p$, then $V(R) \cong \mathbb{Z}_{p^{r-1}} \times (\mathbb{Z}_p^r) h \cup \{0\}$

(ii) If $\text{char } R = p^2$, then $V(R) \cong \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p^r} \times (\mathbb{Z}_p^r) h \cup \{0\}$

(iii) If $\text{char } R = p^k, k \geq 3$, then

$$V(R) \cong \begin{cases} \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_{2^{m-1}} \times (\mathbb{Z}_p^r) h \cup \{0\}, & \text{if } p = 2; \\ \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p^m} \times (\mathbb{Z}_p^r) h \cup \{0\}, & \text{if } p \neq 2. \end{cases}$$

Proof. This is a consequence of Theorem 1 in [5].

Proposition 5. Let $R_0 = GR(p^k, p^k)$ and $U = R_0/pR_0 \oplus \ldots \oplus R_0/pR_0$ be an R-module generated by h elements so that $R = R_0 \oplus U = R_0 \oplus (R_0/pR_0) \oplus \ldots \oplus (R_0/pR_0)$.

If s_0 is regular in R_0, then its VonNeumann inverse $s_0^{-1} = s_0^{k-p^{k-1}-1}$, and

$$(s_0, s_1, s_2, \ldots, s_h)^{-1} = (s_0^{k-p^{k-1}-1}, -s_1 t_0 s_0^{-1}, \ldots, -s_h t_0 s_0^{-1}).$$

Proof. For the inverse of s_0, refer to Proposition 4.

Now let $(t_0, t_1, t_2, \ldots, t_h) = (s_0, s_1, s_2, \ldots, s_h)^{-1}$, then $(s_0, s_1, \ldots, s_h) = (s_0, s_1, s_2, \ldots, s_h)^2$

$$(t_0, t_1, t_2, \ldots, t_h) = (s_0^2, s_0 s_1 + s_1 s_0, s_0 s_2 + s_2 s_0)(t_0, t_1, \ldots, t_h) = (s_0^2 t_0, s_0^2 t_1 + (s_0 s_1 + s_1 s_0) t_0, \ldots, s_0^2 t_h + (s_0 s_h + s_h s_0) t_0)$$

So $s_0 = s_0^2 t_0 \implies s_0 t_0 = 1$

$\implies t_0 = s_0^{-1} = s_0^{k-p^{k-1}-1}$.

For $i = 1, \ldots, h$, $s_i = s_0^2 t_i + (s_0 s_i + s_i s_0) t_0$

$\implies s_0^2 t_i = s_i - (s_0 s_i + s_i s_0) t_0$

$\implies s_i = \frac{s_i - 2 s_0^2 t_i}{s_0}$ because R is commutative.
\[t_i = \frac{s_i}{s_0^2} - \frac{2s_it_0}{s_0} = \frac{s_it_0}{s_0} - \frac{2s_it_0}{s_0} = \frac{-s_it_0}{s_0} = -s_it_0^{-1} \]

So \((s_0, s_1, s_2, \ldots, s_h)^{-1} = (s_0^{p^k-p^k-1}, -s_1s_0^{-2}, \ldots, -s_hs_0^{-2})\)

Theorem 5. Let \(R = R_0 \oplus R_0u_1 \oplus \ldots + R_0u_h\), then \(r \in R\) is regular iff either it is zero or a unit in \(R\).

Proof. \(V(R) = R^* \cup \{0\} = (R^*/1 + J(R)).(1 + J(R)) \cup \{0\} = \langle a \rangle .(1 + J(R)) \cup \{0\} \cong \langle a \rangle \times (1 + J(R)) \cup \{0\} \cong \mathbb{Z}_{p^r-1} \times (1 + J(R)) \cup \{0\}.

4 Main Result

Proposition 6. Let \(R_0 = GR(p^{kr}, p^k)\) and \(U = R_0/pR_0 \oplus \ldots \oplus R_0/pR_0\) be an \(R\)-module generated by \(h\) elements so that \(R = R_0 \oplus U = R_0 \oplus R_0/pR_0 + \ldots \oplus R_0/pR_0\) \(h\)-summands.

If \(s_0\) is regular in \(R_0\), then its VonNeumann inverse is \(s_0^{-1} = s_0^{p^k(p^k-1)-1}\) and \((s_0, s_1, \ldots, s_h)^{-1} = (s_0^{p^k-1}, -s_1t_0s_0^{-1}, \ldots, -s_hs_0^{-1})\)

Proof. Follows from Propositions 4 and 5.

References

http://dx.doi.org/10.12732/ijpam.v86i1.2

Received: February 14, 2015; Published: March 12, 2015