Arithmetical Condition for Normality and Subnormality in Finite Groups

Radoš Bakić

Učiteljski fakultet, Univerzitet u Beogradu
Beograd, Srbija

Copyright © 2014 Radoš Bakić. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let H be a subgroup of finite group G, with $|G : H| = m$. We prove that H is subnormal in G if m satisfies certain arithmetical condition that is related to the nilpotency of a group. We also give a generalization of the well-known theorem about normality of subgroups with the prime index.

Mathematics Subject Classification: 20D35

Keywords: Subnormal groups

1. INTRODUCTION

Let us define arithmetical function ψ in the following way. For a prime p we define $\psi(p^n) = (p^n - 1)(p^{n-1} - 1)\ldots(p - 1)$. If $(n_1, n_2) = 1$, then $\psi(n_1n_2) = \psi(n_1)\psi(n_2)$. For example, we have that $|Gl_n(p)| = p^{n(n-1)/2}\psi(p^n)$, for any prime p. In [3] Pazderski proved that every group of order n is nilpotent iff $(n, \psi(n)) = 1$.

We recall that non-empty class of groups F is called formation if it is closed for homomorphic images, and if $G/H \in F$ and $G/K \in F$ imply $G/H \cap K \in F$. Every finite group G possesses a unique minimal subgroup G_F, that has the quotient group in F. Subgroup G_F is also a characteristic subgroup in G. For example, all finite nilpotent groups make a formation.

Subgroup H of a group G is subnormal in G, if in G exists a chain of subgroups $H = H_1, H_2, \ldots, H_m = G$ such that H_i is normal in H_{i+1}.
2. Results

Our main result is the following:

Theorem 2.1. Let G be a finite group, and $H \leq G$ such that $|G : H| = m$. If $(|G|, \psi(m)) = 1$, then H is subnormal in G.

We shall first prove the following lemma.

Lemma 2.2. Let G be a finite group, and $H \leq G$ such that $|G : H| = m$. If $(|G|, \psi(m)) = 1$, then every maximal subgroup of G that contains H is normal in G and has a prime index.

Proof. Let M be a maximal subgroup in G, containing H. We argue by induction on the order of G, assuming that G is non-cyclic. First we want to show that G cannot be non-cyclic simple group. Suppose the opposite. Then, if m is divisible by odd prime, then G is a group of odd order, and is solvable. It follows that $m = 2^k$. If $k = 1$, then $M = H$ is normal in G as a subgroup of index 2. If $k \geq 2$, then the order of G is not divisible by 3. It means that G has to be one of the Suzuki’s simple groups of order $q^2(q^2 + 1)(q - 1)$, where $q = 2^{2n+1}$, $n > 1$. Hence, $|G|$ is divisible by 2^{10} and 5. If $k > 3$, then $2^4 - 1$ is not coprime with $|G|$, contradicting our initial assumption. It follows that $k = 3$ or $k = 2$. But then G can be embedded into symmetric group S_8, and this is impossible since $|G|$ is divisible by 2^{10}. This shows that G is not simple.

Let K be a minimal normal subgroup in G. If $K \leq M$, then we can apply induction hypothesis on G/K, and therefore M/K is a maximal and normal subgroup in G/K, of prime index. Therefore, M is also a maximal and normal subgroup in G of prime index. Suppose now that K is not contained in M. Then, since M is maximal, we have that $MK = G$. Suppose first that K and M have non-trivial intersection, and let $L = K \cap M$. Then, by the induction hypothesis applied on K, if Q is maximal subgroup in K containing L, it follows that Q is normal in K. By the mentioned Pazderski’s theorem, factor group K/Q is nilpotent. If F is a formation of all finite nilpotent groups, it follows that either K_F is non-trivial, or $K_F = \{1\}$ and $K \in F$. But since K_F is characteristic in K, and therefore normal in G, the minimality of K implies that $K_F = \{1\}$ and $K \in F$. Again, because of the minimality of K, we have that K is a p-group, and moreover $K \cong (C_p)^n$ for some prime p. Since $\text{Aut}(C_p)^n = \text{Gl}_n(p)$, and $|\text{Gl}_n(p)| = p^{\frac{n(n-1)}{2}}$, our initial assumption yields that $\psi(p^n)$ and $|G|$ are coprime. Therefore, every Sylow q-subgroup of G, for $p \neq q$, centralizes K. Subgroup K is also a normal subgroup of some Sylow p-subgroup of G. Being normal subgroup of a Sylow p-subgroup, K must have non-trivial intersection with it’s center. This implies that K has a non-trivial intersection with the center of G. The minimality of K implies that $K \cong C_p \leq Z(G)$, and so $M < G$, which completes the proof. □
Proof of the Theorem 2.1. Let $H = H_0, H_1, \ldots, H_t = G$, be the chain of subgroups in G, such that H_i is a maximal subgroup in H_{i+1}. Then, by the previous lemma we have that H_i is also normal in H_{i+1}, so H is subnormal in G. \hfill \Box

One of the basic theorems in the finite group theory states that subgroup of a group G of a prime index p is normal if that prime is the smallest prime divisor of the order of G. In [2] it is proved that the same is true under a weaker condition $(|G|, p - 1) = 1$. Let us note that the previous theorem is a generalization. From our previous considerations we can deduce immediately the following corollary

Corollary 2.3. Let H be a maximal subgroup of a finite group G, such that $|G : H| = m$. If $(|G|, \psi(m)) = 1$, then H is normal in G, and m is a prime.

Finally, setting $H = \{1\}$ in Lemma 2.2, we see that our result generalizes the mentioned Pazderski’s theorem. Indeed, finite nilpotent groups are characterized by condition that all its maximal subgroups are normal subgroups.

References

http://dx.doi.org/10.1017/cbo9781139175319
http://dx.doi.org/10.1007/bf01240807

Received: December 22, 2014; Published: February 1, 2015