Galois Extensions Induced by a Central Idempotent in a Partial Galois Extension

Xiao-Long Jiang

Department of Mathematics
Sun Yat-Sen University
Guangzhou, 510275 P.R. China

George Szeto

Department of Mathematics
Bradley University,
Peoria, Illinois 61625 USA

Copyright © 2014 Xiao-Long Jiang and George Szeto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \((R, \alpha)\) be a partial Galois extension of \(R^{\alpha G}\) with a partial action of a finite group \(G\), \(e\) a non-zero central idempotent in \(R\), \(1_g\) the central idempotent associated with \(g \in G\), and \(E = e(\Pi_{g \in G} 1_g) \neq 0\) with a maximal number of factors \(1_g\) for \(g \in G\). A sufficient condition for a Galois extension \(Re\) with Galois group \(H(e)\) and for a Galois extension \(RE\) with Galois group \(N(e)\) is given respectively, where \(H(e) = \{g \in G | e1_g = e\}\) and \(N(e) = \{g \in G | e(\Pi_{g \in G} 1_g) \neq 0\}\) with a maximal number of factors \(1_g\) for \(g \in G\). This leads to a structure of \(Re\) as a direct sum of Galois extensions.

Mathematics Subject Classification: 13B05

Keywords: Galois extension, Partial Galois extension, Boolean semigroup, Central idempotent
1 Introduction

Galois theory for fields has been generalized for rings in [1, 3, 4, 8]. Recently, a partial action on a ring of a finite group had many applications in operator algebra, ring theory and other areas of research [2, 6, 7, 9, 10]. A lot of properties of a partial Galois extension of a ring with a partial action of a finite group have been given ([6, 9]). Let \((R, \alpha_G)\) be a partial Galois extension with a partial action of a finite group \(G\). Denote the Boolean semi-group generated by \(\{1_g | g \in G\}\) under the multiplication of \(R\) by \(B(R)\), where \(1_g\) is the central idempotent associated with \(g \in G\). In [9], a Galois extension \(Rf\) is characterized for an \(f \in B(R)\). For any non-zero central idempotent \(e \in R\), not necessarily in \(B(R)\), the purpose of the present paper is to give a sufficient condition for three subsets \(G(e), N(e), H(e)\) of \(G\) induced by \(e\) to be subgroups of \(G\) respectively, where \(G(e) = \{g \in G | e1_g \neq 0\}, N(e) = \{g \in G | e(\Pi_{g \in G}1_g) \neq 0\}\) with a maximal number of factors \(1_g\) and \(H(e) = \{g \in G | e1_g = e\}\). Thus we can show that \(Re\) is a Galois extension with Galois groups \(H(e)\) and \(N(e)\), and obtain an expression for \(Re\) as a direct sum of Galois extensions.

2 Preliminary

Let \(R\) be a ring with 1, \(G\) a finite automorphism group of \(R\), and \(R^G = \{r \in R | g(r) = r\}\) for each \(g \in G\). As defined in [4], if there exist \(\{a_i, b_i \in R | \sum_{i=1}^{n} a_i g(b_i) = \delta_{1,g}\}\) for some integer \(n\), then \(R\) is called a Galois extension of \(R^G\) with Galois group \(G\) and \(\{a_i, b_i\}\) is called a \(G\)-Galois system for \(R\). As given in [6], let \(G\) be a finite group, \((R, \alpha_G)\) is called a ring with a partial action \(\alpha_G\) of \(G\) if \(\alpha_g : D_{g^{-1}} \rightarrow D_g\) is a ring isomorphism where \(D_{g^{-1}}\) and \(D_g\) are ideals of \(R\) for all \(g \in G\) such that (1) \(D_1 = R\) and \(\alpha_1\) is the identity automorphism of \(R\); (2) \(\alpha_g(D_{g^{-1}} \cap D_h) = D_{g} \cap D_{gh}\) for all \(g, h \in G\); (3) \(\alpha_g(\alpha_h(r)) = \alpha_{gh}(r)\) for every \(r \in (D_{h^{-1}} \cap D_{(gh)^{-1}})\). Assume that \(D_g = R1_g\) where \(1_g\) is a central idempotent in \(R\) for each \(g \in G\). Denote \(\{r \in R | \alpha_g(r1_{g^{-1}}) = r1_g\}\) for all \(g \in G\) by \(R^{\alpha_G}\). Then \((R, \alpha_G)\) is called a partial Galois extension of \(R^{\alpha_G}\) if there exist \(\{x_i, y_i \in R | i = 1, \ldots, n\}\) for some integer \(n\) such that \(\sum_{i=1}^{n} x_i \alpha_g(y_i 1_{g^{-1}}) = \delta_{1,g}1_R\) for \(g \in G\), where \(\{x_i, y_i\}\) is called a partial Galois system for \(R\). In particular, if \(R^{\alpha_G}\) is contained in the center of \(R\), then \((R, \alpha_G)\) is called a partial Galois algebra. We shall employ the following identity \(\alpha_g(1_h 1_{g^{-1}}) = 1_{gh}1_g\) for all \(g, h \in G\) ([6], page 79).
3 Galois Extensions

In this section, by keeping the definitions and notations in Section 2, let \((R, \alpha_G)\) be a partial Galois extension of \(R^{\alpha_G}\) with a partial action of a finite group \(G\), and \(e\) a non-zero central idempotent in \(R\). There are three subsets of \(G\) associated with \(e: (1) G(e) = \{g \in G | e1_g \neq 0\}\), \(2) N(e) = \{g \in G | e(\Pi_g1_g) \neq 0\}\) with a maximal number of factors \(1_g\), and \(3) H(e) = \{g \in G | e1_g = e\}\). We shall show when these subsets are subgroups of \(G\) so that \(Re\) is a Galois extension with each of these groups as Galois group. The following identity is useful: \(\alpha_g(1_h1_g^{-1}) = 1_{gh}1_g\) for all \(g, h \in G\) ([6], p. 79).

Theorem 3.3 Let \(e\) be a non-zero central idempotent in \(R\) and \(G(e) = \{g \in G | e1_g \neq 0\}\). If \(e1_g1_h \neq 0\) and \(e\) is in \(R^{\alpha_G(e)}\) for all \(g, h \in G(e)\), then \(G(e)\) is a subgroup of \(G\) and \(Re\) is a partial Galois extension with a partial action of \(G(e)\).

Proof. For any \(g \in G\), \(\alpha_g(e1_g^{-1}) = e1_g \neq 0\), so \(e1_g^{-1} \neq 0\). Hence \(g^{-1}\) is in \(G(e)\). Next for any \(g, h \in G(e)\), \(e1_h1_g \neq 0\) by hypothesis, we have \(0 \neq \alpha_g(e1_h1_g^{-1}) = \alpha_g(e1_g^{-1})\alpha_g(1_h1_g^{-1}) = e1_g1_h1_g = e1_{gh}1_g\); and so \(e1_{gh} \neq 0\). Thus \(gh\) is in \(G(e)\). This implies that \(G(e)\) is a subgroup of \(G\). Noting that \(e\) is in \(R^{\alpha_G(e)}\) and \((R, \alpha_G)\) is a partial Galois extension, we conclude that \((Re, \alpha_{G(e)})\) is a partial Galois extension.

Recall that \(N(e) = \{g \in G | e(\Pi_g1_g) \neq 0\}\) with a maximal number of factors \(1_g\}. Since \(G\) is finite, there are finite number of subsets \(\{N(e) : N_1(e), \ldots, N_k(e)\}\) for some integer \(k\). Denote \((\Pi_g1_g)\) for \(g \in N_i(e)\) by \(E_i\) for each \(i = 1, \ldots, k\).

Proposition 3.2 Let \(G(e), N_i(e) = \{g \in G | e(\Pi_g1_g) \neq 0\}\) with a maximal number of factors \(1_g\}\} for each \(i\) and \(E_i\) be given above. Then \(G(e) = \bigcup_{i=1}^k N_i(e)\) and \(E_iE_j = \delta_{ij}E_i\) for \(i, j = 1, \ldots, k\).

Proof. For any \(g \in G(e), e1_g \neq 0\), so \(e1_g \neq 0\) can extend to \(e1_g(\Pi_{h\in G}1_h) \neq 0\) with a maximal number of factors \(1_h\) for \(h \in G\). Hence \(g\) is in \(N_i(e)\) for some \(i = 1, \ldots, k\); and so \(G(e) \subseteq \bigcup_{i=1}^k N_i(e)\). Also clearly \(\bigcup_{i=1}^k N_i(e) \subseteq G(e)\). Thus \(G(e) = \bigcup_{i=1}^k N_i(e)\). Moreover, since \(E_i \neq E_j\) for \(i \neq j\), there exists a factor \(1_g\) of \(E_i\) which is not a factor of \(E_j\). Then we have \(E_iE_j = 0\) by the maximality of the number of factors \(1_h\) of \(E_j\). This implies \(E_iE_j = \delta_{i,j}E_i\).

Next we show a sufficient condition under which \(N_i(e)\) is a subgroup of \(G\) for each \(i\).

Theorem 3.3 By keeping the notations in Proposition 3.2, if \(E_i\) is in \(R^{N_i(e)}\), then \(N_i(e)\) is a subgroup of \(G\) and \(RE_i\) is a Galois extension of \((RE_i)^{\alpha_{N_i(e)}}\) with Galois group \(N_i(e)\).
Proof. For any \(g \in N_i(e) \), \(\alpha_g(E_i1_{g^{-1}}) = E_i1_g \neq 0 \) because \(E_i \) is in \(R^{\alpha_{N_i(e)}} \) by hypothesis. Hence \(E_i1_{g^{-1}} \neq 0 \). Thus \(g^{-1} \in N_i(e) \). Next for any \(h, g \in N_i(e) \), \(0 \neq \alpha_g(E_i1_{h^{-1}g^{-1}}) = E_i1_{hg}1_g = E_i1_{hg} \), so \(hg \in N_i(e) \). Therefore \(N_i(e) \) is a subgroup of \(G \). Moreover, noting that \(E_i \) is in \(R^{\alpha_{N_i(e)}} \) and \(E_i1_g = E_i \) for each \(g \in N_i(e) \), we have that \(RE_i \) is a Galois extension of \((RE_i)^{\alpha_{N_i(e)}} \) with Galois group \(N_i(e) \).

When \(e \) is in \(R^{\alpha_{N_i(e)}} \), the converse of Theorem 3.3 holds.

Theorem 3.4 Assume \(e \) is in \(R^{\alpha_{N_i(e)}} \). If \(N_i(e) \) is a subgroup of \(G \), then \(E_i \) is in \(R^{\alpha_{N_i(e)}} \).

Proof. Since \(E_i = e(\Pi_g1_g) \neq 0 \) with a maximal number of factors \(1_g \), for any \(h \in N_i(e) \), \(\alpha_h(E_i1_{h^{-1}}) = \alpha_h(e\Pi_g1_g1_{h^{-1}}) = \alpha_h(e1_{h^{-1}})\alpha_h(\Pi_g1_g1_{h^{-1}}) = (e1_h)(\Pi_g1_{hg}1_h) = e(\Pi_g1_g)1_h = E_i1_h \). Thus \(E_i \) is in \(R^{\alpha_{N_i(e)}} \).

Keeping the notations of Theorem 3.3, we have an expression of \(Re \).

Theorem 3.5 Let \(E_i \) be in \(R^{\alpha_{N_i(e)}} \) as given in Theorem 3.3. If \(e = \sum_{i=1}^{k} E_i \), then \(Re = \oplus \sum_{i=1}^{k} RE_i \) such that \(RE_i \) is a Galois extension with Galois group \(N_i(e) \) for each \(i \).

Proof. Since \(E_i(e) = e(\Pi_g1_g) \neq 0 \) with a maximal number of factors \(1_g \) for \(g \in G \), \(E_iE_j = \delta_{i,j}E_i \) by Proposition 3.2. Since \(e = \sum_{i=1}^{k} E_i \) by hypothesis, \(Re = \oplus \sum_{i=1}^{k} RE_i \) such that \(RE_i \) is a Galois extension with Galois group \(N_i(e) \) for each \(i \) by Theorem 3.3.

Recall that \(H(e) = \{ g \in G | e1_g = e \} \). Next we show a sufficient condition for \(H(e) \) to be a Galois group for the Galois extension \(Re \).

Theorem 3.6 If \(e \) is in \(R^{\alpha_{H(e)}} \), then \(H(e) \) is a subgroup of \(G \) and \(Re \) is a Galois extension of \(R^{\alpha_{H(e)}} \) with Galois group \(H(e) \).

Proof. For any \(h, g \in H(e) \), \(\alpha_g(e1_h1_{g^{-1}}) = \alpha_g(e1_g) = e1_g = e \) by hypothesis. Also, \(\alpha_g(e1_h1_{g^{-1}}) = \alpha_g(e1_{g^{-1}})\alpha_g(1_h1_{g^{-1}}) = (e1_g)(1_{gh}1_g) = e1_{gh} = e \). Thus \(gh \) is in \(H(e) \). But \(H(e) \) is finite, so \(H(e) \) is a subgroup of \(G \). Moreover, since \(e1_g = e \) for each \(g \in H(e) \), the action of \(H(e) \) on \(Re \) is global; that is, \(H(e) \) is an automorphism group of \(Re \). Noting that \(e \) is in \(R^{\alpha_{H(e)}} \), we conclude that \(Re \) is a Galois extension of \(R^{\alpha_{H(e)}} \) with Galois group \(H(e) \).

When \(e \) is a minimal central idempotent in \(R^{\alpha_{G(e)}} \), all subsets of \(G \) induced by \(e \) are the same.
Corollary 3.7 If \(e \) is a minimal central idempotent in \(R^{\alpha G(e)} \), then \(G(e) = H(e) = N_i(e) \) for each \(i \) and \(Re \) is a Galois extension of \(R^{\alpha G(e)} \) with Galois group \(G(e) \).

\textbf{Proof.} Since \(e \) is minimal, \(G(e) = H(e) = N_i(e) \) is clear by the definitions of these subsets of \(G \). Also \(e \) is in \(R^{\alpha G(e)} \), so \(Re \) is a Galois extension of \(R^{\alpha G(e)} \) with Galois group \(G(e) \) by Theorem 3.6.

Corollary 3.8 If \((R, \alpha_G) \) is a partial Galois algebra with finitely many central idempotents \(\{e_i | i = 1, \ldots, n\} \) for some integer \(n \), then \(R = \oplus \sum_i(Re_i) \) where \(Re_i \) is a Galois extension of \(R^{\alpha G(e_i)} \) for each \(i \).

\textbf{Proof.} Since \((R, \alpha_G) \) is a partial Galois algebra with finitely many central idempotents \(\{e_i | i = 1, \ldots, n\} \), we can assume that \(\{e_i\} \) are minimal such that \(1 = \sum_i e_i \) and \(e_i \) is in \(R^{\alpha G(e_i)} \) for each \(i \). Thus the \textit{Corollary} holds by Corollary 3.7.

\textbf{References}

Received: May 5, 2014