Dualities in Koszul Graded Artin-Schelter Gorenstein Algebras

R. Martínez-Villa

Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
http://www.matmor.unam.mx

Abstract

The paper is dedicated to the study of certain non commutative graded Artin-Schelter Gorenstein algebras Λ.

The main result of the paper is that for Koszul algebras Λ with Yoneda algebra Γ, such that both Λ and Γ are graded Artin-Schelter Gorenstein noetherian of finite local cohomology dimension on both sides, there are dualities of triangulated categories:

\[\text{gr}_\Lambda[\Omega^{-1}] \cong \text{D}^b(Q_{\text{gr} \Gamma}) \text{ and } \text{gr}_\Gamma[\Omega^{-1}] \cong \text{D}^b(Q_{\text{gr} \Lambda}) \]

where, \(Q_{\text{gr} \Gamma}\) is the category of tails, this is: the category of finitely generated graded modules \(\text{gr} \Gamma\) divided by the modules of finite length, and \(\text{D}^b(Q_{\text{gr} \Gamma})\) the corresponding derived category and \(\text{gr}_\Lambda[\Omega^{-1}]\) the stabilization of the category of finetely generated graded \(\Lambda\)-modules, module the finetely generated projective modules.

Mathematics Subject Classification: Primary 16E65, Secondary 16E40

Keywords: As Gorenstein, local cohomology

1 Introduction

The paper is dedicated to the study of certain non commutative graded Artin-Schelter Gorenstein algebras (AS Gorenstein, for short) Λ, [11],[14], [15], those which are noetherian of finite local cohomology dimension on both sides, and
Koszul. We proved in [14] that the Yoneda algebra Γ of a Koszul graded AS Gorenstein algebra is again graded AS Gorenstein. We will assume in addition Λ and Γ are both noetherian and of finite local cohomology dimension on both sides.

For such algebras we can generalize the classical Bernstein-Gelfand-Gelfand [4] theorem, which says that there is an equivalence of triangulated categories: $\text{gr}_{\Lambda} \cong D^b(\text{CohP}_n)$, where gr_{Λ} is the stable category of the finitely generated Λ-modules over the exterior algebra in n variables and $D^b(\text{CohP}_n)$ is the derived category of bounded complexes of coherent sheaves on n-dimensional projective space.

This theorem was generalized in [16] and [17] as follows:

Let Λ be a finite dimensional Koszul algebra with noetherian Yoneda algebra Γ. Then there is a duality of triangulated categories: $\text{gr}_{\Lambda}[\Omega^{-1}] \cong D^b(\text{Qgr}_{\Gamma})$, where $\text{gr}_{\Lambda}[\Omega^{-1}]$, is the stabilization of gr_{Λ} (in the sense of [2],[3]) and Qgr_{Γ} is the category of tails, this is: the category of finitely generated graded modules gr_{Γ} divided by the modules of finite length, and $D^b(\text{Qgr}_{\Gamma})$ the corresponding derived category.

The main result of the paper is that for Koszul algebras Λ with Yoneda algebra Γ, such that both Λ and Γ are graded AS Gorenstein noetherian of finite local cohomology dimension on both sides, there are dualities of triangulated categories:

$$\text{gr}_{\Lambda}[\Omega^{-1}] \cong D^b(\text{Qgr}_{\Gamma}) \quad \text{and} \quad \text{gr}_{\Gamma}[\Omega^{-1}] \cong D^b(\text{Qgr}_{\Lambda}).$$

2 Castelnuovo-Mumford Regularity

This section is dedicated to review the concepts and results developed by P. Jørgensen in [9],[10] and to check they apply to the algebras considered in the paper, for completeness we reproduce his proofs here. The main result is the following:

Theorem 2.1. Let Λ be a noetherian Koszul AS Gorenstein algebra of finite local cohomology dimension. Then for any finitely generated graded module M there is a truncation $M_{\geq k}$ such that $M_{\geq k}[k]$ is Koszul.

To prove it we use the line of arguments given in [9] and [10] for connected graded algebras, checking that they easily extend to positively graded locally finite algebras A over a field k. This is $A = \bigoplus_{i \geq 0} A_i$, where $A_0 = k \times k \times \ldots \times k$ and for each $i \geq 0 \dim_k A_i < \infty$.

We assume the reader is familiar with basic results on triangulated and derived categories, in particular with the derived functors of Hom and \otimes. For details we refer the reader to [8],[20],[21],[26],[27].
We use the following notation: Given a complex Y of graded left Λ-modules we will denote by Y' the dual complex $Y' = \text{Hom}_\mathbb{k}(Y, \mathbb{k})$.

Given graded Λ-modules Y, Z, the degree zero maps will be denoted by $\text{Hom}_{\text{Gr}}(Y, Z)$, $Z[i] = Z[i + j]$ is the shift and $\text{Hom}_\Lambda(Y, Z) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\text{Gr}}(Y, Z[i])$.

Proposition 2.2. Let A be a positively graded \mathbb{k}-algebra, A^op the opposite algebra and X, Y complexes, $X \in D^+(\text{Gr}_{A^\text{op}})$ and $Y \in D^-(\text{Gr}_A)$. Then $(X \otimes_A Y') = R\text{Hom}(Y, X')$.

Proof. Let $F \to Y$ be a quasi-isomorphism from a complex of free modules F. Then $X \otimes_A Y \cong X \otimes_A F$ and $(X \otimes_A F)^q = \bigoplus_{p+q=n} X^p \otimes F^q$, where $F^q = \oplus A^q$, hence, $(X \otimes_A F)^n = \bigoplus_{p+q=n} X^p \otimes \oplus A^q = \bigoplus_{p+q=n} X^p$.

Therefore: $\text{Hom}_\mathbb{k}(X \otimes_A F^n, \mathbb{k}) = \text{Hom}_\mathbb{k}(\bigoplus_{p+q=n} X^p, \mathbb{k}) = \prod \text{Hom}_\mathbb{k}(X^p, \mathbb{k})$.

In the other hand, $R\text{Hom}_A(Y, X')^{-n} = \text{Hom}^\circ(F, X')^{-n} = \prod \text{Hom}_A(F^q, (X')^{q-n}) = \prod \text{Hom}_A(\oplus A, (X')^{q-n}) = \prod \text{Hom}((X')^{q-n}, (X \otimes_A F)^{-n})$.

Let’s recall the definition of local cohomology dimension.

Definition 2.3. Let $A = \bigoplus_{i \geq 0} A_i$, be a positively graded \mathbb{k}-algebra with graded Jacobson radical $\mathfrak{m} = \bigoplus_{i \geq 1} A_i$, define a left exact endo functor $\Gamma_m: \text{Gr}^+_A \to \text{Gr}^+_A$ in the category of bounded above graded Λ-modules Gr_A, by

$$\Gamma_m(M) = \lim_{\text{proj}} \text{Hom}_A(A/A_{\geq k}, M).$$

Denote by $\Gamma_m^n(-)$, the n-th derived functor. It is clear that $\Gamma_m^n(M) = \lim_k \text{Ext}^n_{A}(A/A_{\geq k}, M)$. We say that A has finite local cohomology dimension, if there exist a non negative integer d such that for all $M \in \text{Gr}_A^+$ and $n \geq d$, $\Gamma_m^n(M) = 0$.

We refer to [6] IX Corollary 2.4 a for the proof of the following:

Lemma 2.4. Let A be a \mathbb{k}-algebra and I an injective A- A bimodule. The I is injective both as left and as a right A-module.

In order to prove next proposition we need the following:

Lemma 2.5. Let A be a positively graded left noetherian \mathbb{k}-algebra of finite local cohomology dimension on the left, and $\{Z_i\}_{i \in K}$ a family of Γ_m-acyclic graded modules. Then $\bigoplus_{i \in K} Z_i$ is Γ_m-acyclic.
Proof. Let \(\{Z_i\}_{i \in K} \) be a family of \(\Gamma_m \)-acyclic graded modules, this is: each \(Z_i \) has an injective resolution:

\[
0 \to Z_i \to I_0^{I_i} \to I_1^{I_i} \to I_2^{I_i} \to \ldots I_k^{I_i} \to I_{k+1}^{I_i} \to \ldots \text{ such that } 0 \to \Gamma_m(I_0^{I_i}) \to \\
\Gamma_m(I_1^{I_i}) \to \ldots \Gamma_m(I_k^{I_i}) \to \Gamma_m(I_{k+1}^{I_i}) \to \ldots \text{ has homology zero except at degree zero.}
\]

Since \(A \) is noetherian the exact sequence:

\[
0 \to \bigoplus_{i \in K} (Z_i) \to \bigoplus_{i \in K} (I_0^{I_i}) \to \bigoplus_{i \in K} (I_1^{I_i}) \to \ldots \bigoplus_{i \in K} (I_k^{I_i}) \to \bigoplus_{i \in K} (I_{k+1}^{I_i}) \to \ldots
\]

is an injective resolution of \(\bigoplus_{i \in K} (Z_i) \), and \(\Gamma_m\left(\bigoplus_{i \in K} (I_k^{I_i}) \right) = \lim_{s} \text{Hom}_A(A/A_{\geq s}, \bigoplus_{i \in K} (I_k^{I_i})) \), and \(A/A_{\geq s} \) finitely presented implies \(\lim_{s} \text{Hom}_A(A/A_{\geq s}, \bigoplus_{i \in K} (I_k^{I_i})) = \)

\[
\lim_{s} \bigoplus_{i \in K} \text{Hom}_A(A/A_{\geq s}, (I_k^{I_i})) = \bigoplus_{i \in K} \Gamma_m(I_k^{I_i}).
\]

In fact: \(0 \to \Gamma_m\left(\bigoplus_{i \in K} (Z_i) \right) \to \Gamma_m\left(\bigoplus_{i \in K} (I_0^{I_i}) \right) \to \Gamma_m\left(\bigoplus_{i \in K} (I_1^{I_i}) \right) \to \Gamma_m\left(\bigoplus_{i \in K} (I_k^{I_i}) \right) \to \ldots \Gamma_m\left(\bigoplus_{i \in K} (I_k^{I_i}) \right) \to \ldots
\]

\[
\Gamma_m\left(\bigoplus_{i \in K} (I_k^{I_i}) \right) \to \Gamma_m\left(\bigoplus_{i \in K} (I_k^{I_i}) \right)
\]

is isomorphic to \(0 \to \bigoplus_{i \in K} \Gamma_m(Z_i) \to \bigoplus_{i \in K} \Gamma_m(I_0^{I_i}) \to \bigoplus_{i \in K} \Gamma_m(I_1^{I_i}) \to \ldots \bigoplus_{i \in K} \Gamma_m(I_k^{I_i}) \to \ldots
\]

The claim follows. \(\Box \)

Proposition 2.6. Let \(A \) be a positively graded left noetherian \(k \)-algebra of finite local cohomology dimension on the left. Then for any \(X \in D^+(\text{Gr}_A^e) \), \(Y \in D^-(\text{Gr}_A) \), there is an isomorphism \(R\Gamma_m(X \otimes_A Y) \cong R\Gamma_m(X) \otimes_A Y \).

Proof. The complex \(X \) is in \(D^+ \), hence, it has an injective resolution with objects in \(\text{Gr}_A^e \), \(X \to I \) and \(X \in D^b(\text{Gr}_A^e) \) implies \(H^i(X) = 0 \) for almost all \(i \).

Assume \(H^i(X) = 0 \) for \(i > s \) and let \(Z = \text{Ker}d_s \), where \(d_s : I^s \to I^{s+1} \) is the differential. Hence, \(0 \to Z \to I^s \to I^{s+1} \to I^{s+2} \to \ldots \to I^{s+k} \to 0 \) is an injective resolution of \(Z \) as \(A \)-bimodule.

Since \(A \) has finite local cohomology dimension, there exists an integer \(t \) such that \(\Gamma_m^j(Z) = 0 \) for \(j > t \). If \(Z' = \text{Im} d_t \), \(d_t : I^t \to I^{t+1} \) is the differential, then \(\Gamma_m^j(Z') = 0 \) for \(j > 0 \), this is \(Z' \) is \(\Gamma_m \)-acyclic.

The complex \(Q : 0 \to I^0 \to I^1 \to \ldots I^t \to Z' \to 0 \) is a complex \(\Gamma_m \)-acyclic which is quasi-isomorphic to \(I \).

The \(\Gamma_m \)-acyclic complexes form an adapted class (See [8], [20]).

Let \(L \to Y \) be a free resolution of \(Y \). Then we have isomorphisms:

\[
X \otimes_A Y \cong X \otimes_A L \cong Q \otimes_A L.
\]

The module \((Q \otimes_A L)^n \) is a direct sum of objects in the complex \(Q \) and \(A \) noetherian implies sums of injective is injective, therefore \(Q \otimes_A L \) is \(\Gamma_m \)-acyclic.

It follows \(R\Gamma_m(X \otimes_A Y) \cong R\Gamma_m(Q \otimes_A L) \). But we have isomorphisms:

\[
\text{Hom}_A(A/A_{\geq k}, (Q \otimes_A L)^n) = \text{Hom}_A(A/A_{\geq k}, Q^p \otimes_A \oplus A) = \\
\oplus \text{Hom}_A(A/A_{\geq k}, Q^p) = \text{Hom}_A(A/A_{\geq k}, Q^p \otimes_A \oplus A) = \\
\text{Hom}_A(A/A_{\geq k}, Q^p) \otimes_A L^{n-p}.
\]
Therefore: \(\lim_{k} \text{Hom}_A(A_{\geq k},(Q \otimes A L)^n)=(\lim_{k} \text{Hom}_A(A_{\geq k}, Q^p)) \otimes_AL^{n-p} \).

We are using the fact that \(A \) is noetherian, hence \(A_{\geq k} \) is finitely presented.

We have proved:

\[\Gamma_m(Q \otimes_A L) \cong \Gamma_m(Q) \otimes_A L. \]

Then \(R\Gamma_m(X \otimes_A Y) \cong R\Gamma_m(X) \otimes_A Y. \)

The proof of the following lemma was given in [9] and reproduced in [15], we will not give it here.

Proposition 2.7. Let \(\Lambda \) be a positively graded \(k \)-algebra such that the graded simple have projective resolutions consisting of finitely generated projective modules, \(m \) the graded radical of \(\Lambda \) and \(m^{op} \) the graded radical of \(\Lambda^{op} \). Then for any integer \(k \), \(\Gamma_m^k(\Lambda) = \Gamma_m^k(\Lambda) \).

We can prove now the following:

Proposition 2.8. Let \(A \) be a positively graded locally finite noetherian \(k \)-algebra of finite local cohomology dimension on both sides. Let \(X \), \(Y \) be bounded complexes of finitely generated graded \(A \)-modules. Then there exists a natural isomorphism: \(R\text{Hom}_A(R\Gamma_m(X), Y) \cong R\text{Hom}_A(X, Y') \).

Proof. Letting \(Y' = \text{Hom}_k(Y, k) \), there is an isomorphism \(R\text{Hom}_A(R\Gamma_m(X), Y) \cong \text{Hom}_A(R\Gamma_m(X), Y') \).

By Proposition 2.2, \(R\text{Hom}_A(R\Gamma_m^{op}(A), Y') \cong (Y' \otimes_A R\Gamma_m^{op}(A))' \).

By Proposition 2.6, \(Y' \otimes_A R\Gamma_m^{op}(A) \cong R\Gamma_m^{op}(Y' \otimes_A A) \cong R\Gamma_m^{op}(Y') \).

Let \(F \) be a free resolution of \(Y \), it consists of finitely generated \(A \)-modules. Hence \(Y' \) consists of finitely cogenerated injective \(A \)-modules, then of torsion modules, and \(\Gamma_m^{op}(Y') \cong \Gamma_m^{op}(F') = F' \cong Y'' \).

Therefore: \(R\text{Hom}_A(R\Gamma_m^{op}(A), Y) \cong Y'' \cong Y \).

Now, there are isomorphisms:

\[R\text{Hom}_A(R\Gamma_m(X), Y) \cong R\text{Hom}_A(R\Gamma_m(A \otimes_A X), Y) \cong R\text{Hom}_A(R\Gamma_m(A) \otimes_A X), Y) \cong R\text{Hom}_A(X, R\text{Hom}(R\Gamma_m(A), Y)). \]

The last isomorphism is by adjunction and the previous one is by Proposition 2.6.

By Proposition 2.7, \(R\text{Hom}_A(R\Gamma_m(X), Y) \cong R\text{Hom}_A(X, R\text{Hom}(R\Gamma_m^{op}(A), Y)). \)

It follows: \(R\text{Hom}_A(R\Gamma_m(X), Y) \cong R\text{Hom}_A(X, Y) \).

Next we have:

Lemma 2.9. For complexes \(X \in D_-(Gr_A) \), \(Y \in D_+(Gr_A) \), there exists a spectral sequence \(E_2^{m,n} = \text{Ext}_A^n(h^{-n}X, Y) \) converging to \(\text{Ext}_A^{n+m}(X, Y) \).
Proof. Let $Y \to J$ be an injective resolution. The complex X is of the form:

$$X : \ldots \to X^{-m} \to \ldots \to X^{-k} \to X^{-k+1} \to \ldots X^{-\ell} \to 0.$$

For each n, there is a complex:

$$\text{Hom}_A(X, J^n): 0 \to \text{Hom}_A(X^{-\ell}, J^n) \to \text{Hom}_A(X^{-\ell-1}, J^n) \to \text{Hom}_A(X^{-k+1}, J^n) \to \ldots \to \text{Hom}_A(X^{-m}, J^n) \to \ldots$$

Since J^n is injective, $H^n(\text{Hom}_A(X, J^n)) \cong \text{Hom}_A(H^n(X), J^n)$.

If $M^{m,n} = \text{Hom}_A(X^{-m}, J^n)$, then $M = (M^{m,n})$ is a complex in the third quadrant.

Taking first the horizontal homology, then the vertical homology, we obtain the spectral sequence $E_2^{m,n} = \text{Ext}_A^{m+n}(h^{-n}X, Y)$ which converges to the homology of the total complex, which by definition, is $\text{Ext}_A^{m+n}(X, Y)$ [27].

We say that a ring A is Gorenstein if A has finite injective dimension, both as left and as right A-module. For the next lemma we need to assume either A is either Gorenstein or it is of finite local cohomology dimension.

Lemma 2.10. For $X \in D^{-}(\text{Gr}_A)$, there is a spectral sequence $E_2^{m,n} = \text{Tor}_m^{\Gamma^{n}_{m\text{op}}}(A, X)$ converging to $\Gamma^{m+n}_{m\text{op}}(X)$.

Proof. By definition, $\Gamma^{m}_{m\text{op}} = h^m R \Gamma_m$. Let F be a free resolution of X.

Then we have a double complex $M^{m,n} = (R \Gamma^{n}_{m\text{op}} A)^{m} \otimes F^n$.

The complex $R \Gamma^{n}_{m\text{op}} A$ is bounded in the Gorenstein case. If A is of finite local cohomology dimension $R \Gamma^{n}_{m\text{op}} A$, can be truncated to a bounded complex of $\Gamma^{m\text{op}}$-acyclic modules.

Taking the second filtration, we obtain a spectral sequence $E_2^{m,n} = \text{Tor}_m^{\Gamma^{n}_{m\text{op}}}(A, X)$ converging to the total complex of M.

We have isomorphisms $\text{Tot} M \cong (R \Gamma^{n}_{m\text{op}} A)^{L}_{A} X \cong (R \Gamma_{m} A)^{L}_{A} X \cong R \Gamma_{m} X$.

Definition 2.11. (Castelnovo-Mumford) A complex $X \in D(\text{Gr}_A)$ is called p-regular if $\Gamma^{m}_{m}(X)_{\geq p+1-m} = 0$ for all m.

\[\square \]
If X is p-regular but not $p-1$-regular, then we say it has Cohen Macaulay regularity p and write $CMreg X = p$. If X is not p-regular for any p, we say $CMreg X = \infty$. If X is p-regular for all p, this is $R_{\Gamma_m} X = 0$, then $CMreg X = -\infty$.

Artin and Schelter introduced in [1] a notion of a non commutative regular algebra that has been very important. We will use here a generalization of non commutative Gorenstein that extends the notion of Artin-Schelter regular. This is a variation of the definition given for connected algebras in [11].

Definition 2.12. Let k be a field and Λ a locally finite positively graded k-algebra. Then we say that Λ is graded Artin-Schelter Gorenstein (AS Gorenstein, for short) if the following conditions are satisfied:

i) For all graded simple S_i concentrated in degree zero and non negative integers $j \neq n$, $\text{Ext}^j_{\Lambda}(S_i, \Lambda) = 0$.

ii) We have an isomorphism $\text{Ext}^n_{\Lambda}(S_i, \Lambda \cong S'_i[-n])$, with S'_i a graded Λ^{op}-simple.

iii) For a non negative integer $k \neq n$, $\text{Ext}^k_{\Lambda^{op}}(\text{Ext}^n_{\Lambda}(S_i, \Lambda), \Lambda) = 0$ and $\text{Ext}^n_{\Lambda^{op}}(\text{Ext}^n_{\Lambda}(S_i, \Lambda), \Lambda \cong S_i)$.

We need to assume now A is graded AS Gorenstein noetherian of finite local cohomology dimension. Under this conditions the following was proved in [15].

Theorem 2.13. Let Λ be a graded AS Gorenstein algebra of graded injective dimension n and such that all graded simple modules have projective resolutions consisting of finitely generated projective modules and assume Λ has finite local cohomology dimension. Then for any graded left module M there is a natural isomorphism: $D(\text{lim}_{k} \text{Ext}^n_{\Lambda}(\Lambda/\Lambda_{\geq k}, M)) \cong \text{Ext}^n_{\Lambda}(M, D(\Gamma_m^\Lambda(\Lambda)))$, for $0 \leq i \leq n$.

Let $D^b_{fg}(\text{Gr}_A)$ be the subcategory of $D^b(\text{Gr}_A)$ of all bounded complexes with finitely generated homology.

Let $X \in D^b_{fg}(\text{Gr}_A)$ and $X \rightarrow I$ an injective resolution. Since X is bounded, there is an integer t such that $H^k(X) = H^k(I) = 0$ for $k > t$.

As above, we can truncate I to obtain a complex $I_>$ consisting of Γ_m-acyclic modules, $I_> \cong X$ and $I_> \in D^b_{fg}(\text{Gr}_A)$.

We want to prove $R\Gamma_m(X)_' \in D^b_{fg}(\text{Gr}_A)$.

$$X : 0 \rightarrow X_{s_1} \xrightarrow{d_1} X_{s_2} \rightarrow ... X_{s_{t-1}} \xrightarrow{d_{t-1}} X_{s_t} \rightarrow 0.$$

We apply induction on t.

If $t = 1$, then X is concentrated in degree s_1 and X of finitely generated homology means X is finitely generated and it has a projective resolution:
\[\ldots \to P_k \to P_{k-1} \to \ldots \to P_1 \to P_0 \to X \to 0 \] with each \(P_i \) finitely generated.

Dualizing with respect to the ring we obtain a complex:
\[P^* : 0 \to P_0^* \to P_1^* \to \ldots \to P_k^* \to P_{k+1}^* \to \ldots \]

with homology \(H^i(P^*) = \text{Ext}^i_A(X, A) \).

Since \(A^{op} \) is noetherian, each \(\text{Ext}^i_A(X, A) \) is finitely generated.

But it was proved in Theorem 2.13:
\[\text{Ext}^i_A(X, D(\Gamma_n^m(A))) \cong D(\lim_{\to} \text{Ext}^i_A(A/A_{\geq k}, X)) = (\Gamma^i_n(A))', \]
where, according to [14], \(D(\Gamma_n^m(A)) \cong \bigoplus_{i=1}^k Q_i[n_i] \) is the \(A \)-\(A \) bimodule obtained by shifting the indecomposable projective in the decomposition \(A = \bigoplus_{i=1}^k Q_i \).

Therefore:
\[\text{Ext}^i_A(X, D(\Gamma_n^m(A))) \cong \text{Ext}^i_A(X, A) \otimes_A D(\Gamma_n^m(A)). \]

Since \(A \) is noetherian, \(\text{Ext}^i_A(X, A) \) is a right finitely generated \(A \) module, hence \(\text{Ext}^i_A(X, D(\Gamma_n^m(A))) \) is a right finitely generated \(A \) module. This implies \(R\Gamma_n^m(X)^i \in D_{fg}^b(Gr_A) \).

Let \(C = \text{Coker}d_{\ell-1} = H_{\ell}(X) \) and \(B_{\ell} = \text{Im}d_{\ell-1} \).

Then there is an exact sequence of complexes:
\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 \to X_{s_1} & \to X_{s_2} & \ldots & X_{s_{\ell-1}} & d_{\ell-1} \to B_{\ell} & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 \to X_{s_1} & \to X_{s_2} & \ldots & X_{s_{\ell-2}} & \to X_{s_{\ell-1}} & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0 & \to C & \to 0 \\
\downarrow & & & & \downarrow & \\
0 & & & & & \\
\end{array}
\]

The complex:
\[Y : 0 \to X_{s_1} \xrightarrow{d_1} X_{s_2} \to \ldots X_{s_{\ell-1}} \xrightarrow{d_{\ell-1}} B_{\ell} \to 0 \]
is quasi- isomorphic to the complex:
\[0 \to X_{s_1} \xrightarrow{d_1} X_{s_2} \to \ldots X_{s_{\ell-2}} \xrightarrow{d_{\ell-2}} Z_{s_{\ell-1}} \to 0 \] with \(Z_{s_{\ell-1}} = \text{Ker}d_{\ell-1} \).

By induction hypothesis \(R\Gamma_m^i(Y)^i \in D_{fg}^b(Gr_A) \).

We have a triangle \(Y \to X \to C \to Y[1] \) which induces a triangle:
\[R\Gamma_m^i(Y) \to R\Gamma_m^i(X) \to R\Gamma_m^i(C) \to R\Gamma_m^i(Y)[1] \]

By the long homology sequence, there is an exact sequence:
\[\Gamma_m^{i-1}(C) \to \Gamma_m^i(Y) \to \Gamma_m^i(X) \to \Gamma_m^i(C) \to \Gamma_m^{i+1}(Y) \]

Dualizing with respect to \(k \), there is an exact sequence:
\[(\Gamma_m^i(C))^i \to (\Gamma_m^i(X))^i \to (\Gamma_m^i(Y))^i. \]
Using A is noetherian and induction, it follows $(\Gamma_m^j(X))'$ is finitely generated. Since for any complex Z and any i there is an isomorphism $H^i(Z) \cong H^i(Z')$. It follows $R\Gamma_m^j(X)' \in D^{fg}_{\mathcal{Q}} (\mathcal{G} A)$. Therefore $R\Gamma_m^j(X)$ is a complex with finitely cogenerated homology and each $\Gamma_m^j(X)$ is finitely cogenerated hence $\text{CMreg} X \neq \infty$ and $\text{CMreg} X \neq -\infty$. In the graded AS Gorenstein case, there is an integer n such that $\Gamma_m^j(A)=\Gamma_m^j(A)=0$ for $j \neq n$. According to [15], $I_n'=\Gamma_m^j(A)=\Gamma_m^j(A)=J_n'$, where $I_n'=\oplus D(P^n_j)[-n_j]$ and $J_n'=\oplus D(P_j)[-n_j]$. I_n' is cogenerated as left module in the same degrees as J_n' is cogenerated as right module and $\text{CMreg}(A\mathcal{A})=\text{CMreg}(A\mathcal{A})$.

Definition 2.14. (Ext-regularity) The complex $X \in D(\mathcal{G} A)$ is r-Ext-regular if $\text{Ext}_A^n(X,A_0) \leq -r-1-m=0$ for all m. If X is r-Ext-regular and is not $(r-1)$-Ext-regular we say $\text{Ext}-\text{regular}(X)=r$. If X is not r-Ext-regular for any r, then $\text{Ext}-\text{regular}(X)=\infty$ and if for all r the complex X is r-Ext-regular, this is $\text{Ext}_A(X,A_0)=0$, then $\text{Ext}-\text{regular}(X)=-\infty$.

In [16] we gave the following definition:

Definition 2.15. A complex of graded modules over a graded algebra is subdiagonal if for each i the i-th module is generated in degrees at least i, provided is not zero.

We will make use of the following:

Lemma 2.16. Let A be a locally finite graded noetherian algebra over a field k and X a complex in $D^R_{\mathcal{Q}} (\mathcal{G} A)$. Then X has a projective resolution $P \rightarrow X$ consisting of finitely generated graded projective modules such that a shift $P[k]$ is subdiagonal.

Proof. Since X has a graded projective resolution P we may consider P instead of X and prove that $P=P' \oplus P''$ where P' is a up to shift subdiagonal complex of finitely generated projective graded modules and $H^i(P'')=0$ for all i.

Given the complex:

$$P : \ldots \rightarrow P_{n+1} \rightarrow P_n \rightarrow P_{n-1} \rightarrow \ldots P_1 \rightarrow P_0 \rightarrow 0$$

there is an exact sequence: $0 \rightarrow B_1 \rightarrow P_0 \rightarrow C \rightarrow 0$ with $H^0(P)=C$ finitely generated.

Since C has a finitely generated projective cover P_0', there is an exact commutative diagram:

$$\begin{array}{ccc}
\text{Ext}_A^n(X,A_0) & \cong & \text{Ext}_A^n(P_0',A_0)
\end{array}$$
Hence $B_1 \cong B'_1 \oplus P''_0$ and B'_1 has a finitely generated projective cover P'_1 and there is an exact sequence: $0 \to Z'_1 \to P'_1 \to B'_1 \to 0$.

We have an exact commutative diagram:

\[
\begin{array}{cccccc}
0 & 0 & 0 & \downarrow & \downarrow & \downarrow \\
0 \to B'_1 & \to P'_0 & \to C & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \to B_1 & \to P_0 & \to C & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \to P''_0 & \to P''_0 & \to 0 \\
\end{array}
\]

Therefore: P is isomorphic to the complex:

\[
\begin{array}{cccccc}
0 & 0 & 0 & \downarrow & \downarrow & \downarrow \\
0 \to Z'_1 & \to P'_1 \oplus P''_0 & \to B'_1 \oplus P''_0 & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \to Z_1 & \to P_1 & \to B'_1 \oplus P''_0 & \to 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \to P''_1 & \to P''_0 & \to 0 \\
\end{array}
\]

with $\text{Im}d_2 \subseteq Z'_1 \oplus P''_1$.

It follows P decomposes as $P = P' \oplus P''$ with:

P' : $\ldots \to P_n \to P_{n-1} \to \ldots P_2 \xrightarrow{d_2} P'_1 \oplus P''_0 \oplus P''_1 \xrightarrow{d_1} P'_0 \oplus P''_0 \to 0$

$P'' : 0 \to P''_0 \to P''_0 \to 0$

The projective P'_0 is finitely generated.

Assume now $P = P' \oplus P''$, where $H^i(P'') = 0$ for all i and

$P' : \ldots \to P_{n+1} \to P_n \to \ldots P_1 \to P_0 \to 0$ with P_1 finitely generated for $0 \leq i \leq n - 2$.

Hence $B_{n-2} = \text{Im}d_{n-1}$ is finitely generated, therefore it has finitely generated projective cover P'_{n-1} and as before, there is a commutative exact diagram:
\[
\begin{array}{c}
0 \\
\downarrow \\
0 \to Z'_{n-1} \to P'_{n-1} \to B_{n-2} \to 0 \\
\downarrow \\
0 \to Z_{n-1} \to P_{n-1} \to B_{n-2} \to 0 \\
\downarrow \\
0 \to P''_{n-1} \to P''_{n-1} \to 0 \\
\downarrow \\
0 \\
\end{array}
\]

Therefore: \(Z_{n-1} \cong Z'_{n-1} \oplus P''_{n-1} \).

Letting \(B_{n-1} \) be the image of \(d_n \) and \(H_{n-1} \) the homology \(H^{n-1}(P) \), which we assume finitely generated, there is an exact sequence: \(0 \to B_{n-1} \to Z'_{n-1} \oplus P''_{n-1} \to H_{n-1} \to 0 \) and an induced commutative, exact diagram:

\[
\begin{array}{c}
0 \\
\downarrow \\
0 \to \overline{B}_{n-1} \to Z'_{n-1} \oplus P''_{n-1} \to H'_{n-1} \to 0 \\
\downarrow \\
0 \to B_{n-1} \to Z_{n-1} \oplus P''_{n-1} \to H_{n-1} \to 0 \\
\downarrow \\
0 \to B''_{n-1} \to P''_{n-1} \to H''_{n-1} \to 0 \\
\downarrow \\
0 \\
\end{array}
\]

with \(\overline{B}_{n-1} = B_{n-1} \cap Z'_{n-1} \) and \(H''_{n-1} \) is finitely generated.

Therefore: the exact sequence: \(0 \to B''_{n-1} \to P''_{n-1} \to H''_{n-1} \to 0 \) is isomorphic to the direct sum of the exact sequences:

\(0 \to L_{n-1} \to Q''_{n-1} \to H''_{n-1} \to 0 \) and \(0 \to Q'_{n-1} \to Q'_{n-1} \to 0 \to 0 \), with \(Q''_{n-1} \) the projective cover of \(H''_{n-1} \), hence finitely generated. Then \(B''_{n-1} \cong L_{n-1} \oplus Q'_{n-1} \).

There is a commutative exact diagram:

\[
\begin{array}{c}
0 \\
\downarrow \\
0 \to \overline{B}_{n-1} \to B'_{n-1} \to L_{n-1} \to 0 \\
\downarrow \\
0 \to \overline{B}_{n-1} \to B_{n-1} \to L_{n-1} \oplus Q'_{n-1} \to 0 \\
\downarrow \\
0 \to Q'_{n-1} \to Q'_{n-1} \to 0 \\
\downarrow \\
0 \\
\end{array}
\]

where \(\overline{B}_{n-1} \) and \(L_{n-1} \) are finitely generated. It follows \(B_{n-1} \cong B'_{n-1} \oplus Q'_{n-1} \) with \(B'_{n-1} \) finitely generated.
We have an exact sequence: $0 \to B'_{n-1} \oplus Q'_{n-1} \to P'_{n-1} \oplus Q''_{n-1} \to P_{n-2}$.

Taking the projective cover of B'_{n-1} we obtain an exact sequence: $0 \to Z'_{n} \to P'_{n} \to B'_{n-1} \to 0$. Therefore: $0 \to Z'_{n} \to P'_{n} \oplus Q'_{n-1} \to B'_{n-1} \oplus Q'_{n-1} \to 0$ is exact.

As above, P_{n} decomposes $P'_{n} \oplus Q'_{n-1} \oplus P''_{n}$.

We have proved that P decomposes in the direct sum of the complexes:

$\cdots \to P_{n+1} \to P_{n} \oplus P''_{n} \to P'_{n-1} \oplus Q''_{n-1} \to P_{n-2} \cdots P_{1} \to P_{0} \to 0$

and $0 \to Q'_{n-1} \to Q'_{n-1} \to 0 \to 0$, where $P'_{n-1} \oplus Q''_{n-1}$ is finitely generated.

\[\square \]

We proved in the previous lemma that for $X \in D^b_{fg}(Gr_{A})$, we can choose a projective resolution of finitely generated projective graded modules: $P \to X$ such that the differential map $d_{j} : P_{j} \to P_{j-1}$ has image contained in the radical of P_{j-1}.

Hence the complex $\hom_{A}(P, A_{0})$:

$0 \to \hom_{A}(P_{0}, A_{0}) \to \hom_{A}(P_{1}, A_{0}) \to \cdots \hom_{A}(P_{n}, A_{0}) \to \cdots$ has zero differential.

It follows $\ext^{k}_{A}(X, A_{0})=\hom_{A}(P_{k}, A_{0}) \neq 0$ and $\ext_{A}(X, A_{0}) \neq 0$.

It follows $\ext-\regular(X) \neq -\infty$, but $\ext-\regular(X)=\infty$ is possible.

Assume $\ext-\regular(X)=r$ is finite.

Each projective P_{j} has a decomposition in indecomposable summands:

$P_{j}=\bigoplus_{i=1}^{m} Q_{j}[-n_{j}^{i}]$, with n_{j}^{i} integers.

Then $\ext^{i}_{A}(X, A_{0})=\hom_{A}(P_{j}, A_{0})=\bigoplus_{i=1}^{m} \hom_{A}(Q_{j}/mQ_{j}[-n_{j}^{i}], A_{0})=
\bigoplus_{i=1}^{m} \hom_{A}(Q_{j}/mQ_{j}[-n_{j}^{i}], A_{0}[k])_{0}$

Therefore: $\hom_{A}(P_{j}, A_{0})_{k} \neq 0$ if and only if for some i, $-n_{j}^{i}=k$.

By definition $\ext^{i}_{A}(X, A_{0})_{k} \leq -r-1-j=0$, this means $-r-j \leq -n_{i}^{j}$ or $r \geq n_{i}^{j}-j$, for all i and $r'=\max\{n_{j}^{i}-j\}$ exists.

Then $\ext^{j}_{A}(X, A_{0})_{k} \leq -r-1-j=0$ and $\ext^{j}_{A}(X, A_{0})_{-(n_{i}^{j}-j)} \neq 0$.

We have proved $\ext-\regular(X)=r=\max\{n_{j}^{i}-j\}$.

Let $P : \cdots \to P_{n+1} \to P_{n} \to P_{n-1} \to \cdots P_{1} \to P_{0} \to A_{0} \to 0$ and $P' : \cdots \to P'_{n+1} \to P'_{n} \to P'_{n-1} \to \cdots P'_{1} \to P'_{0} \to A_{0} \to 0$ be minimal projective resolutions of A_{0} as left and as right module, respectively.

Each P_{j} has a decomposition $P_{j}=\bigoplus_{i=1}^{m} Q_{j}[-n_{j}^{i}]$ and $\tor^{A}_{n}(A_{0}, A_{0})$ is computed as the nth-homology of the complex $A_{0} \otimes A P :$

$\cdots \to A_{0} \otimes A P_{n+1} \to A_{0} \otimes A P_{n} \to A_{0} \otimes A P_{n-1} \to \cdots A_{0} \otimes A P_{1} \to A_{0} \otimes A P_{0} \to 0$ and $A_{0} \otimes A P_{n}=A_{0} \otimes A \oplus Q_{j}[-n_{j}^{m}]=A/m \otimes A \oplus Q_{j}[-n_{j}^{m}] \cong m \bigoplus_{i=1}^{m} Q_{j}/m Q_{j}[-n_{j}^{m}]
\cong \bigoplus_{i=1}^{m} S_{j}[-n_{j}^{m}]$ and the differential of $A_{0} \otimes A P$ is zero.
Using the second resolution $\Tor^A_n(A_0, A_0)$ is the nth-homology of the complex $P' \otimes_A A_0$:

$$
\cdots \rightarrow P'_{n+1} \otimes_A A_0 \rightarrow P'_n \otimes_A A_0 \rightarrow P'_{n-1} \otimes_A A_0 \rightarrow \cdots P'_1 \otimes_A A_0 \rightarrow P'_0 \otimes_A A_0 \rightarrow 0
$$

Each P'_i has a decomposition $P'_i = \bigoplus Q'_i[-n'_i]$ and $P''_n \otimes A_0 = \bigoplus Q'_i[-n'_i] \otimes A_0 = \bigoplus \frac{Q'_i}{Q'_i m[-n'_i]} \cong \bigoplus S'_i[-n'_i]$ and the differential of $P' \otimes A_0$ is zero.

It follows $n'_1 = n'_i$ for all i.

By the above remark, $\Ext-reg A_0 = \Ext-reg A_{0A} = \Ext-reg A_0$.

We write this as a theorem.

Theorem 2.17. Let A be a locally finite k-algebra. Then

$$
\Ext - reg A_0 = \Ext-reg A_{0A} = \Ext-reg A_0.
$$

We next have:

Theorem 2.18. Let A be a noetherian graded AS Gorenstein algebra of finite local cohomology dimension.

Proof. We proved above $CMreg(X) \neq -\infty$. If $Ext-reg A_0 = \infty$, then the inequality is trivially satisfied.

We may assume $Ext-reg A_0 = r$ is finite.

Let $P \rightarrow A_0$ be a minimal projective resolution. Changing notation, P is of the form: $\cdots P^{n+1} \rightarrow P^n \rightarrow \cdots P^1 \rightarrow P^0 \rightarrow 0$, where $P^m = \bigoplus P_j^{(m)}[-\sigma_{m,j}]$ and $\sigma_{m,j} \leq r + m$.

Dualizing, we obtain an injective resolution I with $I^m = \bigoplus D(P_j^{(m)})[\sigma_{m,j}]$, of A_0 as right module.

Let p be $p = CMreg(X)$, $Z = R\Gamma_m(X)$ and denote by h^{-n} the homology. Then by definition we have:

$$
h^{-n}(Z)_{\geq p + 1 + n} = h^{-n}(R\Gamma_m(X))_{\geq p + 1 + n} = \Gamma_m^{-n}(X)_{\geq p + 1 + n} = 0 \text{ for all } n.
$$

Therefore: $(h^{-n}(Z))_{\leq -p - 1 - n} = 0$.

But $\Ext_A^m(h^{-n}(Z), A_0)$ is a subquotient of $\Hom_A(h^{-n}(Z), I^m)$

$$
\Hom_A(h^{-n}(Z), \bigoplus D(P_j^{(m)})[\sigma_{m,j}]) = \Hom_A(h^{-n}(Z), D(P_j^{(m)})[\sigma_{m,j}])
$$

$$
\cong \bigoplus \Hom_k((P_j^{(m)})^* \otimes h^{-n}(Z), k)[\sigma_{m,j}] \cong \bigoplus \Hom_k((e_j h^{-n}(Z), k)[\sigma_{m,j}]
$$

with e_j the idempotent corresponding to $P_j^{(m)}$. Since $(h^{-n}(Z))_{\leq -p - 1 - n} = 0$, it follows $\Hom_k((e_j h^{-n}(Z), k)_{\leq -p - 1 - n} = 0$.

Observe that the truncation of a shifted module $M[k]_{\leq -t-k} = M_{\leq -t}[k]$. Therefore: $\text{Ext}^m_{\mathcal{A}}(h^{-n}(Z), A_0)_{\leq -p-1-n-r-m} = 0$.

We have a converging spectral sequence:
$$E^2_{m,n} = \text{Ext}^m_{\mathcal{A}}(h^{-n}(Z), A_0) \Rightarrow \text{Ext}^{m+n}_{\mathcal{A}}(Z, A_0).$$

This means $\text{Ext}^{m+n}_{\mathcal{A}}(Z, A_0)$ is a subquotient of $E^2_{m,n} = \text{Ext}^m_{\mathcal{A}}(h^{-n}(Z), A_0)$ and $\text{Ext}_A^m(h^{-n}(Z), A_0)_{\leq -p-1-n} = 0$ implies $\text{Ext}_A^q(Z, A_0)_{\leq -p-1-r-q} = 0$ for all q.

We have isomorphisms:
$$\text{Ext}_A^q(Z, A_0) \cong \text{Ext}^q_{\mathcal{A}}(R\Gamma_m(X), A_0) \cong H^q(\text{RHom}(R\Gamma_m(X), A_0))$$
$$\cong H^q(\text{RHom}(X, A_0)) \cong \text{Ext}_A^q(X, A_0).$$

Therefore: $\text{Ext}^q_{\mathcal{A}}(X, A_0)_{\leq -p-1-r-q} = 0$.

This implies $\text{Ext}\text{-reg}(X)_{\leq p+r} = \text{CMreg}(X) + \text{Ext}\text{-reg}A_0$. \hfill \square

Corollary 2.19. Assume the same conditions as in the theorem and $\text{Ext}\text{-reg}A_0$ finite. Then for any $X \in \mathcal{D}^b_f(\text{Gr}_A)$, $\text{Ext}\text{-reg}(X)$ is finite.

Proof. This follows from the above remark that $\text{CMreg}(X)$ is finite. \hfill \square

Interchanging the roles of Ext-regular and CM-regular we obtain in the next result a similar inequality.

Theorem 2.20. Let A be a noetherian AS Gorenstein algebra of finite local cohomology dimension.

Given $X \in \mathcal{D}^b_f(\text{Gr}_A), X \neq 0$. Then $\text{CMreg}(X) \leq \text{Ext}\text{-reg}(X) + \text{CMreg}A$.

Proof. Since we know $\text{CMreg}A \neq -\infty$, the assumption $\text{Ext}\text{-reg}(X) = \infty$ gives the inequality and we can assume $\text{Ext}(X) = r$ is finite.

As before, there is a projective resolution $P \to X$ of X with $P^{(m)} = \oplus P_j^{(m)}[-\sigma_{m,j}]$ and $\sigma_{m,j} \leq r+m$.

Let p be $p = \text{CMreg}_A A = \text{CMreg}A_A$. Then by definition $\Gamma_{m^{op}}^n(A)_{\geq p+1-n} = 0$ for all n.

Then $\text{Tor}^A_{-m}(\Gamma_{m^{op}}^n(A), X)$ is a subquotient of $\Gamma_{m^{op}}^n(A) \otimes_A P^{(-m)} = \oplus \Gamma_{m^{op}}^n(A) \otimes_A P_j^{(-m)}[-\sigma_{m,j}] = \oplus \Gamma_{m^{op}}^n(A)e_j[-\sigma_{m,j}]$, with e_j the idempotent corresponding to $P_j^{(-m)}$ and $\sigma_{m,j} \leq r-m$.

Therefore: $\Gamma_{m^{op}}^n(A)[-\sigma_{m,j}]_{\geq p+1-n+(r-m)} = 0$.

As above, it follows $\text{Tor}^A_{-m}(\Gamma_{m^{op}}^n(A), X)_{\geq p+1-n+r-m} = 0$.

The spectral sequence $E_2^{m,n} = \text{Tor}^A_{-m}(\Gamma_{m^{op}}^n(A), X) \Rightarrow \Gamma_{m^{op}}^{m+n}(X)$ converges (Lemma 2.4).

Hence $\Gamma_{m^{op}}^{m+n}(X)$ is a subquotient of $\text{Tor}^A_{-m}(\Gamma_{m^{op}}^n(A), X)$ and it follows $\Gamma_{m}^q(X)_{\geq p+1-r-q} = 0$.

We have proved $\text{CMreg}(X) \leq p+r = \text{Ext}\text{-reg}(X) + \text{CMreg}A$. \hfill \square
Remark 1. The algebra A is Koszul if and only if $\text{Ext} - \text{reg} A_0 = 0$.

Corollary 2.21. Assume the same conditions on A as in the theorem and in addition A Koszul and $\text{CMreg} A = 0$. Then $\text{Ext} - \text{reg}(X) = \text{CMreg}(X)$.

Let J_n the A- A bimodule, $J_n = \bigoplus_{j=1}^{m} D(Q_j)[-n_j]$ with Q_j the indecomposable summands of A and the shifts are the shifts of the simple appearing in the definition of AS Gorenstein. Then we have the following:

Lemma 2.22. Let A be a noetherian AS Gorenstein algebra of graded injective dimension n, M a finitely generated left A-module. Then for any integer s, $\text{Ext}^n_A(M/M \geq s, D(J'_n)) \geq s = 0$.

Proof. Assume $M_{k_0} \neq 0$ and $M_j = 0$ for $j < k_0$ and $s = k_0 + t$, with t a positive integer. Then $M/M \geq s = M_{k_0} + M_{k_0+1} + \ldots M_{k_0+t-1}$.

We apply induction on t. Let $S_i[-k]$ be a simple concentrated in degree k. Then $\text{Ext}^n_A(S_i[-k], D(J'_n)) = \text{Ext}^n_A(S_i, A) \otimes_A D(J'_n)[k] \cong S_i[-n_i] \otimes_{\oplus Q_j[n_j]}^m \cong S_i'[k].$

Since $M_{k_0} = M/M \geq k_0+1$ is a semisimple concentrated in degree k_0, $\text{Ext}^n_A(M_{k_0}, D(J'_n))$ is a semisimple concentrated in degree $-k_0$. By the AS Gorenstein property, the exact sequence:

$0 \to M_{k_0+1}/M \geq s \to M/M \geq s \to M_{k_0} \to 0$, induces an exact sequence:

$0 \to \text{Ext}^n_A(M_{k_0}, D(J'_n)) \to N \to \text{Ext}^n_A(M \geq k_0+1/M \geq s, D(J'_n)) \to 0$

where $\text{Ext}^n_A(M/M \geq s, D(J'_n)) = N$. It follows by induction that N has a filtration: $N \supseteq N_1 \supseteq N_2 \supseteq \ldots N_{t-1} \supseteq 0$, such that for $0 \leq i \leq t-1$, N_i/N_{i+1} is a semisimple concentrated in degree $-k_0+t-1-i$.

Therefore: $\text{Ext}^n_A(M/M \geq s, D(J'_n)) \geq s = 0$.

We have all the ingredients to prove the main theorem of the section.

Theorem 2.23. Let A be a noetherian AS Gorenstein algebra of finite local cohomology dimension. Assume A Koszul and let M be a finitely generated graded A-module. Then for $s \geq \text{CMreg} M$, the projective resolution of $M_{\geq s}[s]$ is linear.

Proof. Assume $M_{\geq s}[s] \neq 0$ and let $P^{(n+1)} \to P^{(n)} \to \ldots P^{(1)} \to P^{(0)} \to M_{\geq s}[s] \to 0$ be the projective resolution. The module $M_{\geq s}[s]$ is generated in degree zero and $P^{(m)}$ decomposes as $P^{(m)} = \oplus P^{(m)}_j[-\sigma_{m,j}]$ and $m \leq \sigma_{m,j}$.

We must prove $P^{(m)}$ does not have generators in degrees larger than m, or equivalently $\text{Ext} - \text{reg}(M_{\geq s}[s]) \leq 0$, which will follow from the above inequalities once we prove $\text{CMreg}(M_{\geq s}[s]) \leq 0$ or equivalently, $\text{CMreg}(M_{\geq s}) \leq s$, this is:
\[\Gamma_m^\ast (M_{\geq s})_{\geq s+1-m} = 0. \]

The module \(L = M/M_{\geq s} \) is of finite length. By the local cohomology formula, \(\lim_{k} \text{Ext}^j_A(A/m^k, L) = \text{D}(\text{Ext}^{n-j}_A(L, \text{D}(\Gamma_m^\ast (A))). \]

Since \(A \) is graded AS Gorenstein \(\text{Ext}^{n-j}_A(L, \text{D}(\Gamma_m^\ast (A))) = 0 \) for \(j \neq n \). It follows \(\Gamma_m^\ast (M/M_{\geq s}) \geq s \). It follows by Lemma 2.22 that \(\Gamma_m^\ast (M/M_{\geq s})_{\geq s+1-m} = 0 \) for all \(m \).

The exact sequence: \(0 \rightarrow M_{\geq s} \rightarrow M \rightarrow M/M_{\geq s} \rightarrow 0 \) induces a triangle \(M_{\geq s} \rightarrow M \rightarrow M/M_{\geq s} \rightarrow M_{\geq s}[1] \), hence a triangle \(R\Gamma_m^\ast (M_{\geq s}) \rightarrow R\Gamma_m^\ast (M) \rightarrow R\Gamma_m^\ast (M/M_{\geq s}) \rightarrow R\Gamma_m^\ast (M_{\geq s})[1] \), by the long homology sequence we obtain an exact sequence:

\[\rightarrow \Gamma_m^{m-1}(M/M_{\geq s}) \rightarrow \Gamma_m^\ast (M) \rightarrow \Gamma_m^\ast (M/M_{\geq s}) \]

The inequality \(s \geq \text{CMreg}(M) \) implies \(\Gamma_m^\ast (M)_{\geq s+1-m} = 0 \) for all \(m \).

Therefore: \(\Gamma_m^\ast (M_{\geq s})_{\geq s+1-m} = 0 \) for all \(m \).

\[\square \]

3 Algebras AS Gorenstein and Koszul

In this section we will use the main theorem of the last section in order to extend a theorem by Bernstein-Gelfand-Gelfand, [4] which claims that for the exterior algebra in \(n \)-variables \(\Lambda \) there is an equivalence of triangulated categories \(\text{gr}_A \cong \text{D}^b(\text{CohP}_n) \) from the stable category of finitely generated graded modules to the category of bounded complexes of coherent sheaves on projective space \(P_n \). The theorem was extended to finite dimensional Koszul algebras in [16],[17] see also [22]. We want to prove here a version of this theorem for AS Gorenstein algebras of finite cohomological dimension. We will show that the arguments used in [16] can be easily extended to this situation. We will assume the reader is familiar with the results of [14], [16] and [18] and the bibliography given there.

It was proved in [25] and [13] that a finite dimensional Koszul algebra \(\Lambda \) is selfinjective if and only if its Yoneda algebra \(\Gamma \) is Artin Schelter regular [1]. The following generalization was proved in [14] and [23].

Theorem 3.1. A Koszul algebra \(\Lambda \) is graded AS Gorenstein if and only if its Yoneda algebra \(\Gamma \) is graded AS Gorenstein.

Remark 2. Observe the following:

i) The algebra \(\Lambda \) can be noetherian with non noetherian Yoneda algebra \(\Gamma \).

ii) The algebra \(\Lambda \) could be Gorenstein and \(\Gamma \) only weakly Gorenstein this is: there exists an integer \(n \) such that for all \(\Gamma \)-modules left (right) of finite length \(\text{Ext}^j_A(M, \Gamma) = 0 \) for all \(j > n \).

iii) The algebra \(\Lambda \) could be of finite local cohomology dimension and \(\Gamma \) of infinite local cohomology dimension.
However, there are Koszul algebras Λ with Yoneda algebra Γ such that both Λ and Γ are graded AS Gorenstein, noetherian (in both sides) and of finite cohomological dimension, for example if Λ and Δ are Koszul selfinjective algebras with noetherian Yoneda algebras, Γ and Σ, respectively, then $\Lambda \otimes \Sigma$ is AS Gorenstein noetherian of finite local cohomology dimension on both sides and with Yoneda algebra the skew tensor product (in the sense of [6] or [19]) $\Gamma \boxtimes \Delta$ which is also AS Gorenstein noetherian and of finite cohomological dimension on both sides. A special case would be $\Lambda \otimes \Gamma$.

A concrete example of such algebras is Λ the exterior algebra in n variables and Γ the polynomial algebra in n variables, this example appears as the cohomology ring of an elementary abelian p-group over a field of positive characteristic $p \neq 2$. [5]

Another example is the trivial extension $\Lambda = \mathbb{k}QD(\mathbb{k}Q)$ with Q an Euclidean diagram and Γ the preprojective algebra corresponding to Q [12]. We need the following definitions and results from [18]:

Definition 3.2. Let Λ be a Koszul algebra with graded Jacobson radical m. A finitely generated graded Λ-module M is weakly Koszul if it has a minimal projective resolution: $0 \to P_n \to P_{n-1} \to \ldots P_1 \to P_0 \to M \to 0$ such that $m^{k+1}P_i \cap \ker d_i = m^k \ker d_i$.

The next result characterizing weakly Koszul modules was proved in [18].

Theorem 3.3. Let Λ be a Koszul algebra with Yoneda algebra and denote by gr_{Λ}, the category of finitely generated graded Λ-modules, $F : \text{gr}_{\Lambda} \to \text{Gr}_{\Gamma}$ be the exact functor $F(M) = \bigoplus_{k \geq 0} \text{Ext}^k_{\Lambda}(M, \Lambda_0)$. Then M is weakly Koszul if and only if $F(M)$ is Koszul.

As a consequence of this theorem and the results of the last section we have:

Theorem 3.4. Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then given a finitely generated left Λ-module M there is a non negative integer k such that $\Omega^k(M)$ is weakly Koszul.

Proof. Since Λ is Koszul AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides, for any finitely generated graded Λ-module M there is a truncation $M_{\geq s}$ such that $M_{\geq s}[s]$ is Koszul and there is an exact sequence: $0 \to M_{\geq s} \to M \to M/M_{\geq s} \to 0$ with $M/M_{\geq s}$ of finite length. Then we have an exact sequence: $F(M/M_{\geq s}) \to F(M) \to F(M_{\geq s})$. Since F sends simple modules to indecomposable projective, it sends modules of finite length to finitely generated modules and $M_{\geq s}$ Koszul up to shift implies $F(M_{\geq s})$ Koszul up to shift, hence finitely generated. Since we are assuming...
Γ noetherian, it follows $F(M)$ is finitely generated. By Theorem 2.23, $F(M)$ has a truncation $F(M)_{\geq t}$ Koszul up to shift and $F(M)_{\geq t} = \bigoplus_{k \geq t} \text{Ext}^k_{\Lambda}(M, \Lambda_0) [-t]$

$\cong \bigoplus_{k \geq 0} \text{Ext}^k_{\Lambda}(\Omega^t(M), \Lambda_0) [-t] = F(\Omega^t(M))$.

By Theorem 3.3, $\Omega^t(M)$ is weakly Koszul.

Definition 3.5. A complex of graded Λ-modules is linear if for each i, the ith module is generated in degree i, provided it is not zero.

Let Q be a finite quiver, $\mathbb{k}Q$ the path algebra graded by path length and $\Lambda = \mathbb{k}Q/I$ be a quotient with I a homogeneous ideal contained in $\mathbb{k}Q_{\geq 2}$ and Γ the Yoneda algebra of Λ, it was shown in [17] that there is a functor

$$\Phi: \ell.f.gr_{\Lambda} \rightarrow \text{lcp}_{\Gamma^-}$$

between the category of locally finite graded Λ-modules, $\ell.f.gr_{\Lambda}$, and the category of right bounded linear complexes of finitely generated graded projective Γ-modules lcp_{Γ^-}. We recall the construction of Φ.

Let $M = \{M_i\}_{i \geq n_0}$ be a finitely generated graded Λ-module and $\mu: \Lambda_1 \otimes_{\Lambda_0} M_k \rightarrow M_{k+1}$ the map of Λ_0-modules given by multiplication.

Since M_k is a finitely generated Λ_0-module, we have a homomorphism of Λ_0-modules

$$\text{D}(\mu): \text{D}(M_{k+1}) \rightarrow \text{D}(M_k) \otimes_{\Lambda_0} \text{D}(\Lambda_1),$$

where $\text{D}(\cdot) = \text{Hom}_{\Lambda_0}(\cdot, \Lambda_0)$. Applying $\text{Hom}_{\Lambda}(\cdot, \Lambda_0)$ to the exact sequence

$$0 \rightarrow \mathfrak{m} \rightarrow \Lambda \rightarrow \Lambda_0 \rightarrow 0$$

By the long homology sequence, we obtain an exact sequence

$$0 \rightarrow \text{Hom}_{\Lambda}(\Lambda_0, \Lambda_0) \rightarrow \text{Hom}_{\Lambda}(\Lambda, \Lambda_0) \rightarrow \text{Hom}_{\Lambda}(\mathfrak{m}, \Lambda_0) \rightarrow \text{Ext}^1_{\Lambda}(\Lambda_0, \Lambda_0) \rightarrow 0$$

the second map is an isomorphism, which implies $\text{Hom}_{\Lambda}(\mathfrak{m}, \Lambda_0) \rightarrow \text{Ext}^1_{\Lambda}(\Lambda_0, \Lambda_0)$ is an isomorphism. Since Λ_0 is semisimple, there is an isomorphism

$$\text{Hom}_{\Lambda}(\mathfrak{m}, \Lambda_0) \cong \text{Hom}_{\Lambda}(\mathfrak{m}/\mathfrak{m}^2, \Lambda_0)$$

As a result there is an isomorphism $\text{D}(\Lambda_1) = \text{Hom}_{\Lambda_0}(\Lambda_1, \Lambda_0) \cong \Gamma_1$ and we have a Λ_0-linear map $d_{k_0}: \text{D}(M_{k+1}) \rightarrow \text{D}(M_k) \otimes_{\Lambda_0} \Gamma_1$.

For any $\ell \geq 0$, using the fact $\Lambda_0 \cong \Gamma_0$ the multiplication map $\nu: \Gamma_1 \otimes \Gamma_0 \Gamma_\ell \rightarrow \Gamma_{\ell+1}$ induces a new map d_{k_ℓ}, as shown in the diagram:

$$\begin{array}{ccc}
\text{D}(M_{k+1}) \otimes_{\Gamma_0} \Gamma_\ell & \rightarrow & \text{D}(M_k) \otimes_{\Gamma_0} \Gamma_1 \otimes_{\Gamma_0} \Gamma_\ell \\
\downarrow d_{k_\ell} & & \downarrow 1 \otimes \nu \\
\text{D}(M_k) \otimes_{\Gamma_0} \Gamma_{\ell+1} & & \\
\end{array}$$
Hence there is a map in degree zero
\[d_k: D(M_{k+1}) \otimes_{\Gamma_0} \Gamma[-k-1] \to D(M_k) \otimes_{\Gamma_0} \Gamma[-k] \]

Definition 3.6. We call Φ the linearization functor.

Proposition 3.7. The sequence $\Phi(M) = \{ D(M_{k+1}) \otimes_{\Gamma_0} \Gamma[-k-1], d_k \}$ is a right bounded linear complex of finitely generated graded projective Γ-modules.

The following proposition was proved in [17].

Proposition 3.8. The algebra $\Lambda = \mathbb{k}Q/I$ is quadratic if and only if $\Phi: \ell.f.gr\Lambda \to \text{lcp}_\Gamma$ is a duality.

We can say more in case $\Lambda = \mathbb{k}Q/I$ is a Koszul algebra.

Theorem 3.9. Suppose $\Lambda = \mathbb{k}Q/I$ is a Koszul algebra and M a locally finite bounded above graded Λ-module. Then M is Koszul if and only if $\Phi(M)$ is exact, except at minimal degree; in that case, $\Phi(M)$ is a minimal projective resolution of the Koszul module (up to shift) $F(M) = \bigoplus_{k \geq t} \text{Ext}_\Lambda^k(M, \Lambda_0)$.

3.1 Approximations by linear complexes

In this section we will see that the approximations by linear complexes given in [16] can be extended to the family of AS Gorenstein Koszul algebras considered above. Let Λ be a possibly infinite dimensional Koszul algebra with noetherian Yoneda algebra Γ. The category of complexes of finitely generated graded projective Γ-modules with bounded homology $K^{-b}(\text{gr}P\Gamma)$, module the homotopy relations, is equivalent to the derived category of bounded complexes $D_{fg}^{b}(\text{Gr}\Gamma)$.

It was proved proved in Lemma 2.16, that any complex X in $D_{fg}^{b}(\text{Gr}\Gamma)$ has projective resolution $P \to X$ with P consisting of finitely generated projective graded modules and subdiagonal up to a shift.

Since our interest is in Koszul algebras we need the following:

Definition 3.10. A complex is said to be totally linear, if it is linear and each of its terms has a linear projective resolution. Observe that this notion is a generalization of a linear complex of projective modules.

Note that, though the proposition below has been stated more generally than in [16], the proof is the same as in [16].

Proposition 3.11. Let Γ be a noetherian graded algebra and $M_\bullet = \{ M_i, d_i \}_{n \geq i \geq 0}$ a bounded totally linear complex of finitely generated graded Γ-modules. Then there exists a bounded on the right linear complex of finitely generated projective graded modules P_\bullet and a quasi-isomorphism $\mu: P_\bullet \to M_\bullet$ such that $\mu_i: P_i \to M_i$ is an epimorphism for each i.
Proof. The approximation is constructed by induction using a variation of a lemma given by Verdier in [26]. We start with the exact sequence: \(0 \rightarrow B_0 \rightarrow M_0 \rightarrow H_0 \rightarrow 0\), take the projective cover \(P_0 \rightarrow M_0 \rightarrow 0\) and complete a commutative exact diagram:

\[
\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
0 & \Omega(M_0) & \Omega(M_0) & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \Omega(H_0) & P_0 & \rightarrow & H_0 & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & 1 \\
0 & B_0 & M_0 & \rightarrow & H_0 & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}
\]

Taking the pull back we obtain a commutative exact diagram:

\[
\begin{array}{ccc}
0 & 0 \\
\downarrow \\
0 & \Omega(M_0) & \Omega(M_0) & \rightarrow & 0 \\
\downarrow \\
0 & Z_1 & W_1 & \rightarrow & \Omega(H_0) & \rightarrow & 0 \\
\downarrow \\
0 & Z_1 & M_1 & \rightarrow & B_0 & \rightarrow & 0 \\
\downarrow \\
0 & 0 & 0
\end{array}
\]

Since \(M_1\) and \(\Omega(M_0)\) are both generated in degree one and have linear resolutions, the same is true for \(W_1\).

It is clear that the complex \(0 \rightarrow M_n \rightarrow ... \rightarrow M_2 \rightarrow W_1 \rightarrow P_0 \rightarrow 0\) is totally linear and quasi-isomorphic to \(M_\bullet\) and the quasi-isomorphism is an epimorphism in each degree.

Assume by induction we have constructed the totally linear complex: \(0 \rightarrow M_n \rightarrow ... \rightarrow M_{j+1} \rightarrow W_j \rightarrow P_{j-1} \rightarrow ... \rightarrow P_0 \rightarrow 0\) together with a quasi-isomorphism \(\mu\) to the complex \(M_\bullet\) which is an epimorphism in each degrees \(k\) with \(0 \leq k \leq j\) and the identity in degrees \(k\) for \(j+1 \leq k \leq n\).

We have a commutative exact diagram:
which induces by pullback the commutative exact diagram:

\[
\begin{array}{cccc}
0 & 0 & & \\
\downarrow & \downarrow & & \\
0 & \Omega(W_j) & \Omega(W_j) & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & K & P_j & W_j/B_j \\
\downarrow & \downarrow & \downarrow & \\
0 & B_j & W_j & W_j/B_j \\
\downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0
\end{array}
\]

By Verdier’s lemma [26] we have a complex: \(P^{(j)}_\bullet : 0 \to M_n \to \cdots \to M_{j+2} \to \cdots \to P_j \to \cdots \to P_0 \to 0 \) and a quasi isomorphism \(\tilde{\mu} : P^{(j)}_\bullet \to M_\bullet \) which is the identity in degrees \(k \) such that \(j+2 \leq k \leq n \) and an epimorphism in the remaining degrees.

We get by induction a totally linear complex: \(P^{(n-1)}_\bullet : 0 \to W_n \to P_{n-1} \to P_{n-2} \to \cdots \to P_0 \to 0 \) with \(P_j \) for \(0 \leq j \leq n-1 \) finitely generated graded projective modules generated in degree \(j \). There is a quasi-isomorphism \(\mu : P^{(n-1)}_\bullet \to M_\bullet \) such that in each degree the maps are epimorphisms.

As above, we obtain the commutative exact diagram:

\[
\begin{array}{cccc}
0 & 0 & & \\
\downarrow & \downarrow & & \\
0 & \Omega(W_n) & \Omega(W_n) & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & Z'_n & P_n & B_{n-1} \\
\downarrow & \downarrow & \downarrow & \\
0 & Z_n & W_n & B_{n-1} \\
\downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0
\end{array}
\]

Since \(W_n \) has a linear resolution \(\Omega(W_n) \) has a linear resolution \(P^{(n+1)}_\bullet \to \Omega(W_n) \).
It follows $P_{n+1} \to P_n \to P_{n-1} \to P_{n-2} \to \ldots \to P_0 \to 0$ is a linear complex of finitely generated graded projective modules which is quasi-isomorphic to M_\bullet and all the maps in the quasi-isomorphism are epimorphisms.

We see next that for noetherian AS Gorenstein algebras of finite local cohomology any bounded complex can be approximated by a totally linear complex.

Proposition 3.12. Let Γ be a Koszul algebra AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then given a bounded complex M_\bullet of finitely generated graded Γ-modules, there exists a up to shift totally linear subcomplex L_\bullet such that M_\bullet/L_\bullet is a complex of modules of finite length.

Proof. Let M_\bullet be the complex $M_\bullet = \{M_j \mid 0 \leq j \leq n\}$. By Theorem 6, for each j there is a truncation $(M_j)_{\geq n_j}$ such that $(M_j)_{\geq n_j}[n_j]$ is Koszul. Taking $n=\max\{n_j\}$ each $(M_j)_{\geq n}$ is Koszul. Define $L_\bullet = \{L_j \mid L_j = (M_j)_{\geq n+j}\}$. Then L_\bullet is totally linear with M_\bullet/L_\bullet a is a complex of modules of finite length.

We have now the following:

Lemma 3.13. Let Λ be a Koszul algebra AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides with Yoneda algebra Γ and $\Phi:gr\Lambda \to lcp_\Gamma$ the linearization functor. Then for any finitely generated module M the complex $\Phi(M)$ is contained in lcp_Γ^{-b}, this is the homology $H^i(\Phi(M))=0$ for almost all i.

Proof. According to Theorem 2.23, there is a truncation $M_{\geq s}$ which is Koszul up to shift, and the exact sequence $0 \to M_{\geq s} \to M \to M/M_{\geq s} \to 0$, which induces an exact sequence of complexes $0 \to \Phi(M/M_{\geq s}) \to \Phi(M) \to \Phi(M_{\geq s}) \to 0$ where $\Phi(M/M_{\geq s})$ is a finite complex and $\Phi(M_{\geq s})$ is exact, except at minimal degree, it follows by the long homology sequence that $H^i(\Phi(M))=0$ for almost all i.

We remarked above that the categories $D^b(gr\Gamma)$ and $K^-(gr\Gamma)$ are equivalent as triangulated categories, we have proved that the image of Φ is contained in $K^-(gr\Gamma)$. Composing with the equivalence, we obtain a functor $\Phi':gr\Lambda \to D^b(gr\Gamma)$.

Let \mathcal{A} be an abelian category, a Serre subcategory \mathcal{T} of \mathcal{A} is a full subcategory with the property that for every short exact sequence of \mathcal{A}, say, $0 \to A \to B \to C \to 0$ the object B is in \mathcal{T} if and only if $A, C \in \mathcal{T}$. By [7], we have a quotient abelian category \mathcal{A}/\mathcal{T} and an exact functor $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{T}$, which induces at the level of derived categories an exact functor: $D(\pi):D(\mathcal{A}) \to D(\mathcal{A}/\mathcal{T})$. The following result is well known:
Lemma 3.14. [21] The kernel of $D(\pi)$ is the full subcategory \mathcal{K} with objects the complex with homology in \mathcal{T} and $D(\pi)$ induces an equivalence of categories $D^*(A)/\mathcal{K} \cong D^*(A/\mathcal{T})$ for $* = +, -, b$.

We apply the lemma in the following situation:

Let Γ be a noetherian Koszul algebra, $\text{gr}\Gamma$ the category of finitely generated graded Γ-modules. Let $Q\text{gr}\Gamma$ be the quotient category of $\text{gr}\Gamma$ by the Serre subcategory of the modules of finite length. Let $\pi: \text{gr}\Gamma \to Q\text{gr}\Gamma$ be the natural projection and $D(\pi): D^b(\text{gr}\Gamma) \to D^b(Q\text{gr}\Gamma)$ the induced functor. Denote by \mathcal{F}_Γ be the full subcategory of $D^b(\text{gr}\Gamma)$ consisting of bounded complexes of graded Γ-modules of finite length. Then we have:

Theorem 3.15. [17] The functor $D(\pi): D^b(\text{gr}\Gamma) \to D^b(Q\text{gr}\Gamma)$ has kernel \mathcal{F}_Γ. It induces an equivalence of triangulated categories $\sigma: D^b(\text{gr}\Gamma)/\mathcal{F}_\Gamma \to D^b(Q\text{gr}\Gamma)$.

Let $q: D^b(\text{gr}\Gamma) \to D^b(\text{gr}\Gamma)/\mathcal{F}_\Gamma$ be the quotient functor. Then $\sigma q = D(\pi)$. The functor $j: K^{-b}(\text{gr}\Gamma) \to D^b(\text{gr}\Gamma)$ is truncation, j is an equivalence.

Let Λ be a Koszul algebra with Yoneda algebra Γ such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. The functor $\theta: \text{gr}\Lambda \to D^b(Q\text{gr}\Gamma)$ is the composition:

$\text{gr}\Lambda \xrightarrow{\Phi} K^{-b}(\text{gr}\Gamma) \xrightarrow{i} D^b(\text{gr}\Gamma) \xrightarrow{\pi} D^b(Q\text{gr}\Gamma)$,

where i is just the inclusion.

Now let P be a finitely generated projective graded Λ-module, $P = \bigoplus P_i[n_i]$, with each P_i generated in degree zero. Then $\Phi(P)$ is isomorphic in the category of complexes over $\text{gr}\Gamma$ to $\bigoplus \Phi(P_i)[n_i]$ and each $\Phi(P_i)$ is a projective resolution of a semisimple Γ-module. It follows θ sends any map factoring through a graded projective module to a zero map in $D^b(Q\text{gr}\Gamma)$. Consequently, θ induces a functor $\theta: \text{gr}\Lambda \to D^b(Q\text{gr}\Gamma)$. The functor θ sends exact sequences to exact triangles, the syzygy functor $\Omega: \text{gr}\Lambda \to \text{gr}\Lambda$ is an endofunctor that makes $\text{gr}\Lambda$ "half" triangulated, given an exact sequence $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ in $\text{gr}\Lambda$ and $p: P \to C$ the projective cover, there is an induced exact commutative diagram:

$\begin{array}{c}
0 & \to & \Omega(C) & \to & P & \to & C & \to & 0 \\
& & w \downarrow & & \downarrow & & \downarrow 1 \\
0 & \to & A & \to & B & \to & C & \to & 0
\end{array}$

We obtain a half triangle: $\Omega(C) \to A \to B \to C$ and θ sends the half triangle into a triangle in $D^b(Q\text{gr}\Gamma)$. We want to construct a triangulated
category $\text{gr}_A[\Omega^{-1}]$ such that Ω is an equivalence which acts as the shift and a functor of half triangulated categories $\lambda: \text{gr}_A \to \text{gr}_A[\Omega^{-1}]$ such that given any triangulated category D and a functor of half triangulated categories: $\beta: \text{gr}_A \to D$ there is a unique functor of triangulated categories $\beta: \text{gr}_A[\Omega^{-1}] \to D$ such that $\hat{\beta}\lambda = \beta$.

This was the approach of Beligiannis in [2].

We recall the construction given in [3] and reproduced in [16].

Let (A, ϕ) be a category with endofunctor, if (B, ψ) is another pair, then a functor $F: A \to B$ is said a morphism of pairs if it makes the diagram

\[A \xrightarrow{\phi} A \\
\downarrow F \quad \downarrow F \\
B \xrightarrow{\psi} B \]

commute, this is: the functors $F\phi$ and ψF are naturally isomorphic. If ψ happens to be an auto equivalence, we say that the morphism F inverts ϕ. Then there is a the following universal problem. Given a pair (A, ϕ), find a pair $(A[\phi^{-1}], \rho)$ and a morphism of pairs $G: (A, \phi) \to (A[\phi^{-1}], \rho)$ such that G inverts ϕ and for any morphism of pairs $F: (A, \phi) \to (B, \psi)$ such that F inverts ϕ, there is a unique morphism of pairs $F': (A[\phi^{-1}], \rho) \to (B, \psi)$ making the diagram

\[(A,\phi) \xrightarrow{G} (A[\phi^{-1}], \rho) \xleftarrow{F'} (B, \psi) \]

commute.

The objects of $A[\phi^{-1}]$ are the formal symbols $\phi^{-n}M$ where M is an object of A and $n \geq 0$, $\phi^0M=M$. If M, N are objects in $A[\phi^{-1}]$, we define the morphisms by

\[\text{Mor}_{A[\phi^{-1}]}(M,N) = \lim_{\to_k} \text{Mor}_A(\phi^kM, \phi^kN) \]

where we assume $M=\phi^{-m}M'$ and $N=\phi^{-n}N'$ and $k \geq \max\{m,n\}$. (See [16] for details)

We define the endofunctor $\rho: A[\phi^{-1}] \to A[\phi^{-1}]$ by setting $\rho(M)=\phi(M)$ and $\rho(\phi^{-n}M)=\phi^{-n+1}(M)$ for any M in A and any natural number n. If f is a morphism represented by some $f_n: \phi^nM \to \phi^nN$ and n sufficiently large, then $\rho(f)$ is represented by $\phi(f_n)$.

We obtain the morphism of pairs $G: (A, \phi) \to (A[\phi^{-1}], \rho)$ having the desired properties.
We apply this construction to our pair \((\text{gr}_A, \Omega)\) to obtain a pair \((\text{gr}_A[\Omega^{-1}], \Omega)\) and a map of pairs \(G : (\text{gr}_A, \Omega) \to (\text{gr}_A[\Omega^{-1}], \Omega^{-1})\).

One can check as in [16] or [3] that \((\text{gr}_A[\Omega^{-1}], \Omega^{-1})\) is a triangulated category and \(\theta : \text{gr}_A \to \text{D}^b(\text{gr}_\Gamma)\) induces an exact functor \(\overset{\wedge}{\theta} : \text{gr}_A[\Omega^{-1}] \to \text{D}^b(\text{Qgr}_\Gamma)\) such that the triangle

\[
\begin{array}{ccc}
\text{gr}_A \\
\downarrow \theta \ \\
\overset{\wedge}{\text{gr}}_A[\Omega^{-1}] \\
\end{array}
\]

We now state the main result of the paper.

Theorem 3.16. Let \(\Lambda\) be a Koszul algebra with Yoneda algebra \(\Gamma\) such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then the linearization functor

\[\overset{\wedge}{\theta} : \text{gr}_A[\Omega^{-1}] \to \text{D}^b(\text{Qgr}_\Gamma)\]

is a duality of triangulated categories.

Proof. We will only check the functor \(\overset{\wedge}{\theta}\) is dense, for the rest of the proof we proceed as in [16].

Choose any bounded complex \(B_*\) of finitely generated graded \(\Gamma\)-modules. By Proposition 3.12, the complex \(B_*\) is isomorphic in \(\text{D}^b(\text{Qgr}_\Gamma)\) to the shift of a totally linear complex, which is in turn, by Proposition 3.11, isomorphic to a linear complex \(P_*\) of finitely generated graded projective \(\Gamma\)-modules with zero homology except for a finite number of indices. By Proposition 3.8, there is a finitely generated graded \(\Lambda\)-module \(M\) such that \(\Phi(M) \cong P_*\). Therefore:

\[\overset{\wedge}{\theta}(M) \cong B_*\] in \(\text{D}^b(\text{Qgr}_\Gamma)\). \(\square\)

Corollary 3.17. Let \(\Lambda\) be a Koszul algebra with Yoneda algebra \(\Gamma\) such that both are AS graded Gorenstein noetherian algebras of finite local cohomology dimension on both sides. Then the linearization functor \(\overset{\wedge}{\theta} : \text{gr}_\Gamma[\Omega^{-1}] \to \text{D}^b(\text{Qgr}_\Lambda)\) is a duality of triangulated categories.

Proof. It follows by symmetry. \(\square\)

Acknowledgements

I express my gratitude to Jun-ichi Miyachi for his criticism and some helpful suggestions.
References

Received: April 28, 2014