Ranks and Subdegrees of the Dihedral Groups, D_n, Acting on Unordered r-Element Subsets

R. W. Gachogu1 and I. N. Kamuti2

1Department of Mathematics, Laikipia University
P.O. Box 1100-20300, Nyahururu, Kenya

2Department of Mathematics, Kenyatta University
P.O. Box 43844-00100 Nairobi, Kenya

Corresponding author

Copyright © 2014 R. W. Gachogu and I. N. Kamuti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we determine the property of transitivity of the dihedral groups, D_n, acting on $X^{(1)}$, $X^{(2)}$, and $X^{(3)}$. We also compute the ranks and subdegrees of the respective actions.

Keywords: Transitive Action, Suborbits, Rank, Subdegrees

1. Introduction

Some properties of permutation groups, S_n, acting on r-element subsets have been investigated. The ranks and subdegrees of S_n acting on 2-element subsets from the set $X = \{1, 2, \ldots, n\}$ was shown to be 3 and $1, 2(n - 2), \left(\frac{n}{2}\right)$ respectively by Higman in 1970 [3]. Faradzev and Ivanov, in 1990 [1], worked on the subdegrees of primitive permutation representation of $PSL(2, q)$. In 1992, Kamuti [5] constructed some suborbital graphs of $PGL(2, q)$ acting on the cosets of their maximal dihedral subgroups. Rimberia (2012) [4] worked on suborbits and suborbitals of S_n, acting on unordered and ordered r-element subsets.
In this paper we study some properties of the dihedral group, D_n, acting on unordered r-element subsets from the set $X = \{1, 2 \ldots n\}$.

2. Notations and preliminary definitions

2.1. Definition (The Dihedral group, D_n)

The group, D_n, is the group of all symmetries of a regular polygon. The group is of order $2n$ and is generated by a rotation of order n and a reflection of order 2. Thus, $D_n = \langle x, y : x^n = y^2 = 1 \rangle$.

2.2. Notations

Throughout this paper, the notation, G, refers to a group. The notation, $X^{(r)}$, refers to a set of all unordered r-element subsets from the set $X = \{1, 2 \ldots n\}$, and $\binom{n}{r}$ denotes all combinations of r from n.

2.3. Definition (Group Action)

Let X be a finite non-empty set

A group action of G on a set X is a relation on the pair (G, X) which assigns each $g \in G$ and $x \in X$ an element $gx \in X$. The relation satisfies the property of identity in G and the property of associativity. Namely,

i) $lx = x$, for all $x \in X$ and $l \in G$
ii) $g_1(g_2x) = (g_1g_2)x$, for all $g_1, g_2 \in G$ and $x \in X$

2.4. Definition

The group action of S_n on $X = \{1, 2 \ldots n\}$ is an equivalence relation

2.5. Definition (Orbit of a group action)

An equivalence relation partitions the set, on which it is acting, into disjoint equivalence classes. The classes are called the orbits of the action. For each $x \in (G, X)$, the orbit containing x is denoted by $\text{orb}_G x$. The orbit is given by the set $\text{orb}_G x = \{gx | g \in G\}$.

2.6. Definition (Transitive group action)

The action of a group G on a set X is said to be transitive if for each pair $x_1, x_2 \in X$, there exists $g \in G$ such that $gx_1 = x_2$. Thus, the action has only one orbit.

2.7. Definition (Doubly Transitive Group Action)

Let a group G act a set X, with at least two elements. The action is called doubly transitive if for any two ordered pairs of distinct elements (x_1, x_2) and (y_1, y_2) there exists a $g \in G$ such that $y_1 = gx_1$ and $y_2 = gx_2$.

2.8. Definition (Fixed point set)

Let a group, G, act on a set X. The set of all elements $x \in X$ fixed by $g \in G$ is called the fixed point set of G and it is denoted by $Fix(g)$.

2.9. Definition (Stabilizer of an element, $stab_G x$)

Let G act on a set X. For a fixed point $x \in X$, the stabilizer of x is the set of all elements $g \in G$ such that $gx = x$. The set is denoted by $G_x = \{g \in G: gx = x, \text{for a fixed } x \in X\}$. If $G_x = \{I\}$, then G is said to be regular on X.

2.10. Orbit-stabilizer Theorem (Rose, 1978, P.72)[7]

Let G act on a finite set, X. Then the size of $orb_G x$ is the index $|G: stab_G x|$. Thus, $|orb_G x| = |G: stab_G x|$, for some $x \in X$.

2.11. Cauchy-Frobenius Lemma (Harrary, 1969, P.98)[2]

Let G act on a finite set X. The number of orbits of G in X is given by $\frac{1}{|G|} \sum |Fix(g)|$.

2.12. Definition (Cycle-type)

If a finite group G acts on a set X with n elements, then each $g \in G$ corresponds to a permutation σ of X which can be written uniquely as a product of disjoint cycles. If σ has α_1 cycles of length 1, α_2 cycles of length 2, ... α_n cycles of length n, then σ and g are said to have the cycle type $(\alpha_1, \alpha_2, ..., \alpha_n)$.

Ranks and subdegrees of dihedral groups
2.13. Definition (Rank of a group)
Let G act transitively on a non-empty set X. The orbits $\Delta_0, \Delta_1, \Delta_2, \ldots, \Delta_{r-1}$ of G_x on X are called suborbits of G. The rank of G is r and the sizes

$$n_i = |\Delta_i|(i = 0, 1, 2 \ldots r - 1),$$

the lengths of the suborbits, are known as the subdegrees of G.

The rank of G is 2 iff G is doubly transitive.

3. Transitivity, Ranks and Subdegrees of D_n acting on $X^{(1)}$, $X^{(2)}$ and $X^{(3)}$

3.1. Action of D_n on $X^{(1)}$
Let $G = D_n$ and $X = \{1, 2, 3 \ldots n\}$

Then $X^{(1)} = \{\{1\}, \{2\} \ldots \{n\}\}$

The action of $g \in G$ in $X^{(1)}$ is defined by, $g(\{x\}) = \{g(x)\}$

Theorem 3.1

The group D_n acts transitively on $X^{(1)}$

Proof:
Suppose $g \in G$ has the cycle type $(\alpha_1, \alpha_2 \ldots \alpha_n)$ then $g \in G$ fixes $\{x\} \in X^{(1)}$ if x comes from a 1 - cycle or from $(n-1)$ – cycle. Hence $|Fix(g)| = 2\alpha_1$

Using Cauchy - Frobenius Lemma, the number of orbits of G in $X^{(1)}$ is 1. Hence the action of D_n on $X^{(1)}$ is transitive.

Let $\{x\} \in X^{(1)}$, $|Stab_{G_x}| = 2 \Rightarrow |G_{\{x\}}| = 2$

Using the Orbit-stabilizer Theorem,$|Orb_{G_x}(\{x\}| = \alpha_1$ But the trivial suborbit corresponding to $\{x\}$ has length 1.

The number of non-trivial G_x-Orbits is then $\frac{\alpha_1 - 1}{2}$

Hence,
For α_1 odd, the rank of G is $\frac{\alpha_1-1}{2} + 1 = \frac{\alpha_1+1}{2}$ and the subdegrees are $1, 2, 2, 2 ... \frac{(n-1)}{2}$’s.

When α_1 is even, $|\text{Stab}_{G_x} x| = 2$ and hence $|\text{Orob}_{G_x} x| = \alpha_1$.

Since $g \in G_x$ fixes elements in $X^{(1)}$ pairwise, there are 2 suborbits of length 1.

Hence the rank of G is $\frac{\alpha_1-2}{2} + 2 = \frac{\alpha_1+2}{2}$ and the subdegrees are $1, 1, 2, 2, 2 ... \frac{(n-2)}{2}$’s.

3.2. Action of $G = D_n$ on $X^{(2)}$

Let $\{x_1, x_2\} \in X^{(2)}$. The action of $g \in G$ on $\{x_1, x_2\}$ is defined by

$g \{x_1, x_2\} = \{g(x_1), g(x_2)\}$. An element $g \in G$ fixes $\{x_1, x_2\}$ if each of the elements in $\{x_1, x_2\}$ comes from a 1-cycle in G or the set $\{x_1, x_2\}$ is a 2-cycle in G. The number of elements in $\text{fix}(g)$ is then $\left(\frac{\alpha_1}{2}\right) + \alpha_2$.

When α_1 is odd, $|\text{Fix}(g)|$ in $X^{(2)}$ is given by $\left(\frac{\alpha_1}{2}\right) + (\alpha_1 - 1) \frac{\alpha_1}{2}$.

When α_1 is even, $|\text{Fix}(g)|$ in $X^{(2)}$ is given by $\left(\frac{\alpha_1}{2}\right) + \frac{\alpha_1^2}{2}$.

Theorem 3.2

$G = D_n$ acts transitively on $X^{(2)}$

Proof:

Using Cauchy - Frobenius Lemma, the number of G-Orbits in $X^{(2)}$ is given by

$$\frac{1}{2\alpha_1} \left\{ \left(\frac{\alpha_1}{2}\right) + (\alpha_1 - 1) \frac{\alpha_1}{2} \right\} = \frac{\alpha_1 - 1}{2}$$

For transitivity, $\frac{\alpha_1-1}{2} = 1 \quad \Rightarrow \quad \alpha_1 = 3$

Hence, D_n acts transitively on $X^{(2)}$ when $n = 3$.

3.3. Ranks and subdegrees of the action of D_3 on $X^{(2)}$

Let $\{x_1, x_2\} \in X^{(2)}$

$|\text{Stab}_G\{x_1, x_2\}| = 2$

Since $|X^{(2)}| = 3$, and there has to be a suborbit of length 1 corresponding to $\{x_1, x_2\}$ the suborbits of G are 2

These are $\Delta_0 = \{\{1,2\}\}$, $\Delta_1 = \{\{2,3\}, \{1,3\}\}$

The subdegrees are 1,2 and the rank of G is 2. Hence the action of D_3 on $X^{(2)}$ is doubly transitive.

3.4. Action of $G = D_n$ on $X^{(3)}$

Let $\{x_1, x_2, x_3\} \in X^{(3)}$. The action of $g \in G$ in $X^{(3)}$ is defined by

$g(\{x_1, x_2, x_3\}) = \{g(x_1), g(x_2), g(x_3)\}$. An element $g \in G$ fixes $\{x_1, x_2, x_3\}$ if each of x_1, x_2 and x_3 comes from a 1-cycle in G or one of x_1, x_2, x_3 comes from a 1-cycle and the other two come from 2-cycle in G or $\{x_1, x_2, x_3\}$ comes from a 3-cycle in G. But $g \in G$ is a 3-cycle if α_1 is a multiple of 3.

If x_1, x_2 and x_3 come from 1-cycle in G, then $|\text{Fix}(g)| = \left(\begin{array}{c} \alpha_1 \\ 3 \end{array}\right)$

If $\{x_1, x_2, x_3\}$ come from 1-cycle and 2-cycle, then the number $\text{fix}(g)$ is $\frac{\alpha_1}{2}(\alpha_1 - 1)$.

If $\{x_1, x_2, x_3\}$ come from a 3-cycle, then the number $\text{fix}(g)$ is $\frac{2}{3}\alpha_1$. This exists when α_1 is a multiple of 3.

Theorem 3.3

The action of D_n on $X^{(3)}$ is transitive.

Proof:

Let $\{x_1, x_2, x_3\} \in X^{(3)}$

Using Cauchy - Frobenius Lemma, the number of G-orbits in $X^{(3)}$ is given by
Ranks and subdegrees of dihedral groups

\[\frac{1}{2\alpha_1} \left\{ \left(\frac{\alpha_1}{3}\right) + \frac{\alpha_1}{2}(\alpha_1 - 1) \right\} \], for \(\alpha_1 \) a non-multiple of 3

\[= \frac{1}{12}(\alpha^2 - 4) \]

For transitivity,

\[\frac{1}{12}(\alpha_1^2 - 4) = 1 \]

\[\alpha_1 = 4 \]

Hence, \(D_4 \) acts transitively on \(X^{(3)} \)

3.5. Ranks and Subdegrees of the action of \(D_4 \) on \(X^{(3)} \)

Let \(\{x_1, x_2, x_3\} \in X^{(3)} \)

\[|\text{Stab}_G(x_1, x_2, x_3)| = 2 \text{ and } |X^{(3)}| = \left(\frac{4}{3}\right) = 4. \] Since there exists \(a \in G \) which fixes a pair of elements in \(X^{(3)} \), there are 2 suborbits of length 1. The remaining 2 elements belong to 1 suborbit as they are the pairwise from \((\alpha_1 - 2) \) elements. Hence there is always a suborbit of length 2 in the actions of \(D_n \).

The rank of the action of \(D_4 \) on \(X^{(3)} \) is 3.

The suborbits of the action are \(\Delta_0 = \{1, 2, 3\} \), \(\Delta_1 = \{1, 3, 4\} \), \(\Delta_2 = \{1, 2, 4\}, \{2, 3, 4\} \)

Hence the subdegrees of \(G = D_4 \) are 1, 1, 2

Similarly, the number \(\text{fix}(g) \) when \(\alpha_1 \) is an odd multiple of 3 is

\[\left(\frac{\alpha_1}{3}\right) + \frac{\alpha_1}{2}(\alpha_1 - 1)(\alpha_1 - 2) + \frac{2}{3}\alpha_1 \]

Hence, for transitivity

\[\frac{1}{2\alpha_1} \{4\alpha_1^2 - 12\alpha_1 + 12\} = 1 \]

\[4\alpha_1^2 - 12\alpha_1 = 0 \]
\[\alpha_1 = 3 \]

\(D_3\) acts transitively on \(X^{(3)}\). But this is a trivial action on one element.

Table 1: Table of ranks and subdegrees of \(D_n\) acting on \(X^{(r)}\), \(n \leq 8\)

| G | \(|X^{(r)}|\) | r | rank | subdeges |
|----|--------------|----|------|------------|
| \(D_3\) | 3 | 2 | 2 | 1,2 |
| \(D_4\) | 4 | 3 | 3 | 1,1,2 |
| \(D_5\) | 5 | 4 | 3 | 1,2,2 |
| \(D_6\) | 6 | 5 | 4 | 1,1,2,2 |
| \(D_7\) | 7 | 6 | 4 | 1,2,2,2 |
| \(D_8\) | 8 | 7 | 5 | 1,1,2,2,2 |

Theorem 3.4

The action of \(D_n\) on \(X^{(r)}\) is transitive when \(r = n - 1\)

Proof:

Case 1: When \(n\) is odd

Let \(G = D_n\) act on the set \(X = \{1, 2 ... n\}\)

An element \(x \in X\) is fixed by \(g \in G\) if \(x\) comes from 1-cycle in \(G\) or \(x\) comes from \((n-1)\)-cycle.

If \(g \in G\) fixes 1 element in \(X\), it automatically fixes the remaining \(n - 1\) elements as a set.

Hence, the number \(fix(g)\) in \(X^{(1)} = fix(g)\) in \(X^{(n-1)}\). Transitivity of \(G\) on\(X^{(1)}\) implies transitivity of \(G\) on\(X^{(n-1)}\). Transitivity of \(G\) on \(X^{(1)}\) has been proved in Theorem 3.1, and hence the proof.

Case 2: When \(n\) is even

An element \(x \in X\) is fixed by \(g \in G\) if \(x\) comes from 1-cycle in\(G\) or \(x\) is fixed pairwise. The first alternative is case 1. If \(\{x_1, x_2\}\) is pairwise fixed by \(g\), then the remaining \(n - 2\) elements are automatically fixed by \(g\). We can choose the \(n-2\) elements and 1 element from the set \(\{x_1, x_2\}\) to have a set of \(n-1\) elements, still
fixed by g. But the action of G on $X^{(n-1)}$ is transitive in case 1. Hence, the action of G on $X^{(r)}$ is transitive when $r = n - 1$.

REFERENCES

Received: June 15, 2014