Ore Extensions over Weak \((\sigma, \delta)\)-Rigid Rings

Meeru Abrol and V. K. Bhat

School of Mathematics, SMVD University
P/o SMVD University, Katra, J and K, India- 182320

Copyright © 2014 Meeru Abrol and V. K. Bhat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(R\) be a ring, \(\sigma\) an endomorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). Recall that \(R\) is said to be a weak \((\sigma, \delta)\)-rigid ring if \(a(\sigma(a) + \delta(a)) \in N(R)\) implies and is implied by \(a \in N(R)\) for \(a \in R\) (where \(N(R)\) is the set of nilpotent elements of \(R\)). In this paper we give a necessary and sufficient condition for a commutative Noetherian ring to be a weak \((\sigma, \delta)\)-rigid ring.

Let \(\sigma\) be an endomorphism of a ring \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\) such that \(\sigma(\delta(a)) = \delta(\sigma(a))\), for all \(a \in R\). Then \(\sigma\) can be extended to an endomorphism (say \(\sigma\)) of \(R[x; \sigma, \delta]\) and \(\delta\) can be extended to a \(\sigma\)-derivation (say \(\delta\)) of \(R[x; \sigma, \delta]\).

With this we show that if \(R\) is a commutative Noetherian integral domain which is also an algebra over \(\mathbb{Q}\) (where \(\mathbb{Q}\) is the field of rational numbers), \(\sigma\) an automorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\) such that \(\sigma(\delta(a)) = \delta(\sigma(a))\), for all \(a \in R\). Then \(R\) is a weak \((\sigma, \delta)\)-rigid ring if and only if \(O(R) = R[x; \sigma, \delta]\) is a weak \((\sigma, \delta)\)-rigid ring.

Mathematics Subject Classification: 16P40, 16S36, 16W20

Keywords: Noetherian ring, Ore extension, weak \((\sigma, \delta)\)-rigid rings and \((\sigma, \delta)\)-rigid rings

1. INTRODUCTION

All rings are associative with identity \(1 \neq 0\), unless otherwise stated. The prime radical and the set of nilpotent elements of \(R\) are denoted by \(P(R)\) and
Meeru Abrol and V. K. Bhat

The set of natural numbers is denoted by \(\mathbb{N} \), the ring of integers is denoted by \(\mathbb{Z} \), the field of rational numbers is denoted by \(\mathbb{Q} \), the field of real numbers is denoted by \(\mathbb{R} \) and the field of complex numbers is denoted by \(\mathbb{C} \), unless otherwise stated. The set of minimal prime ideals of \(R \) is denoted by \(\text{Min.Spec}(R) \).

Now let \(R \) be a ring, \(\sigma \) an endomorphism of \(R \). Recall that \(\delta : R \to R \) an additive map such that

\[
\delta(ab) = \delta(a)\sigma(b) + a\delta(b), \text{ for all } a, b \in R
\]

is called a \(\sigma \)-derivation of \(R \).

Example 1.1. Let \(S \) be a ring and \(R = S \times S \). Then \(\sigma : R \to R \) is an endomorphism defined by

\[
\sigma((a, b)) = (b, a), \text{ for all } a, b \in S.
\]

Also \(\delta : R \to R \) defined by

\[
\delta((a, b)) = (a, b) - \sigma((a, b)) \text{ for } (a, b) \in R
\]

is a \(\sigma \)-derivation of \(R \).

Recall that the skew polynomial ring \(R[x; \sigma, \delta] \) is the set of polynomials

\[
\left\{ \sum_{i=1}^{n} x^i a_i, a_i \in R, n \in \mathbb{N} \right\}
\]

with usual addition of polynomials and multiplication subject to the relation \(ax = x\sigma(a) + \delta(a) \), for all \(a \in R \). We take any \(f(x) \in R[x; \sigma, \delta] \) to be of the form \(f(x) = \sum_{i=0}^{n} x^i a_i \) as in McConnell and Robson [8]. We denote \(R[x; \sigma, \delta] \) by \(O(R) \).

Also a ring \(R \) is said to be 2-primal if and only if \(P(R) = N(R) \) i.e., the set of nilpotent elements of \(R \) coincides with the prime radical of \(R \).

Example 1.2. [4]

1. Let \(R = F[x] \) be the polynomial ring over the field \(F \). Then \(R \) is 2-primal with \(P(R) = \{0\} \).
2. Let \(R = M_2(\mathbb{Q}) \), the set of \(2 \times 2 \) matrices over \(\mathbb{Q} \). Then \(R[x] \) is a prime ring with non-zero nilpotent elements and, so cannot be 2-primal.

2-primal rings have been studied in recent years and are being treated by authors for different structures. We know that a ring \(R \) is 2-primal if the prime radical is completely semi-prime. Note that a reduced ring is 2-primal and a commutative ring is also 2-primal.

Krempa in [5] introduced \(\sigma \)-rigid rings; Kwak in [7] introduced \(\sigma(*) \)-rings. Ouyang in [9] introduced weak \(\sigma \)-rigid rings, where \(\sigma \) is an endomorphism of ring \(R \). Bhat in [2] gave a necessary and sufficient condition for a Noetherian ring to be a weak \(\sigma \)-rigid ring.
We discuss skew polynomial rings over weak \((\sigma, \delta)\)-rigid rings. We begin with the following definitions:

Definition 1.3. [1] Let \(R\) be a ring. Let \(\sigma\) be an endomorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). Then \(R\) is said to be a \((\sigma, \delta)\)-ring if \(a(\sigma(a) + \delta(a)) \in P(R)\) implies that \(a \in P(R)\) for \(a \in R\).

Example 1.4. Let \(F\) be a field. Let \(R = F[x]\) be the polynomial ring over \(F\). Here \(P(R) = \{0\}\). Define \(\sigma : R \to R\) by

\[
\sigma(f(x)) = f(-x).
\]

Then it can be seen that \(\sigma\) is an automorphism of \(R\). Also \(\delta : R \to R\) defined by

\[
\delta(f(x)) = f(x) - \sigma(f(x))
\]

is a \(\sigma\)-derivation of \(R\). Now \(f(x)[\sigma(f(x)) + \delta(f(x))] \in P(R)\) implies that \(f(x)[f(-x) + f(x) - f(-x)] \in P(R)\) or \(f(x)^2 \in P(R) = \{0\}\). Hence \(f(x) = 0 \in P(R)\). Thus \(R\) is a \((\sigma, \delta)\)-ring.

Definition 1.5. [1] Let \(R\) be a ring. Let \(\sigma\) be an endomorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). Then \(R\) is said to be a \((\sigma, \delta)\)-rigid ring if \(a(\sigma(a) + \delta(a)) = 0\) implies that \(a = 0\) for \(a \in R\).

Example 1.6. Let \(R = \mathbb{C}\) and \(\sigma : R \to R\) be defined by

\[
\sigma(a + ib) = a - ib, \text{ for all } a, b \in \mathbb{R}.
\]

Then \(\sigma\) is an automorphism of \(R\). Define \(\delta : R \to R\), \(\sigma\)-derivation of \(R\), as

\[
\delta(A) = A - \sigma(A)
\]

i.e., \(\delta(a+ib) = a+ib - \sigma(a+ib) = a+ib - (a-ib) = 2ib\). Then \(\delta\) is a \(\sigma\)-derivation of \(R\). Now \(A[\sigma(A) + \delta(A)] = 0\) gives \((a + ib)[\sigma(a + ib) + \delta(a + ib)] = 0\) i.e. \((a + ib)((a - ib) + 2ib) = 0\) or \((a + ib)(a + ib) = 0\) which implies that \(a = 0, b = 0\). Therefore, \(A = a + ib = 0\). Hence \(R\) is a \((\sigma, \delta)\)-rigid ring.

Example 1.7. Let \(R = \mathbb{Z}_2 \oplus \mathbb{Z}_2\). Then \(R\) is a commutative reduced ring. Define \(\sigma : R \to R\) by \(\sigma((a, b)) = (b, a)\) for \(a, b \in \mathbb{Z}_2\). Then it can be seen that \(\sigma\) is an automorphism of \(R\). Also \(\delta : R \to R\) defined by \(\delta((a, b)) = (a - b, 0)\) for \(a, b \in \mathbb{Z}_2\) is a \(\sigma\)-derivation of \(R\). Here \(P(R) = \{0\}\). But \(R\) is not a \((\sigma, \delta)\)-ring. For take \((a, b) = (0, b)\) for \(0 \neq b \in \mathbb{Z}_2\). It is also not a \((\sigma, \delta)\)-rigid ring.

Definition 1.8. [1] Let \(R\) be a ring. Let \(\sigma\) be an endomorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). Then \(R\) is said to be a weak \((\sigma, \delta)\)-rigid ring if \(a(\sigma(a) + \delta(a)) \in N(R)\) implies and is implied by \(a \in N(R)\) for \(a \in R\).

Example 1.9. Let \(R = \mathbb{Z}[\sqrt{2}]\). Then \(\sigma : R \to R\) defined as

\[
\sigma(a + b\sqrt{2}) = a - b\sqrt{2} \text{ for } a + b\sqrt{2} \in R
\]
is an endomorphism of R. For any $s \in R$. Define $\delta_s : R \to R$ by
\[
\delta_s(a + b\sqrt{2}) = (a + b\sqrt{2})s - s\sigma(a + b\sqrt{2}) \text{ for } a + b\sqrt{2} \in R.
\]
Then δ_s is a σ-derivation of R. Here $N(R) = \{0\}$.
Let $(a + b\sqrt{2})\{\sigma(a + b\sqrt{2}) + \delta_s(a + b\sqrt{2})\} \in N(R)$
which gives $(a + b\sqrt{2})\{(a - b\sqrt{2}) + (a + b\sqrt{2})s - s\sigma(a + b\sqrt{2})\} \in N(R)$
or $(a + b\sqrt{2})\{a - b\sqrt{2} + as + bs\sqrt{2} - sa + sb\sqrt{2}\} \in N(R)$.
Hence $(a + b\sqrt{2})\{a + (2s - 1)b\sqrt{2}\} \in N(R) = \{0\}$ which gives $a = 0, b = 0$ or $a + b\sqrt{2} = 0 + 0\sqrt{2} \in N(R)$. Thus R is a weak (σ, δ)-rigid ring.

Also we have the following:

Let σ be an endomorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for all $a \in R$. Then σ can be extended to an endomorphism (say $\overline{\sigma}$) of $R[x; \sigma, \delta]$ by
\[
\overline{\sigma}(\sum_{i=0}^{m} x^i a_i) = \sum_{i=0}^{m} x^i \sigma(a_i).
\]
Also δ can be extended to a $\overline{\sigma}$-derivation (say $\overline{\delta}$) of $R[x; \sigma, \delta]$ by
\[
\overline{\delta}(\sum_{i=0}^{m} x^i a_i) = \sum_{i=0}^{m} x^i \delta(a_i).
\]
We note that if $\sigma(\delta(a)) \neq \delta(\sigma(a))$, for all $a \in R$, then above does not hold.

For example take $f(x) = xa$, $g(x) = xb$ for $a, b \in R$.

With this we prove the following:

Theorem A: Let R be a commutative Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ an automorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for all $a \in R$. Then R is a weak (σ, δ)-rigid ring if and only if $O(R) = R[x; \sigma, \delta]$ is a weak $(\overline{\sigma}, \overline{\delta})$-rigid ring. (This has been proved in Theorem (3.1)).

2. **Preliminaries**

To prove the main result of this paper we need the following Propositions and Theorems:

Proposition 2.1. Let R be a ring, σ an automorphism of R and δ a σ-derivation of R. Then for $u \neq 0$, $\sigma(u) + \delta(u) \neq 0$.

Proof. See Proposition (3.1) of [1].

Theorem 2.2. Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R and δ a σ-derivation of R. If R is a (σ, δ)-ring, then R is 2-primal.
Proof. See Theorem (3.2) of [1].

The converse of the above is not true.

Example 2.3. Let $R = F(x)$, the field of rational polynomials in one variable x over the field F. Then R is 2-primal with $P(R) = \{0\}$. Let $\sigma : R \to R$ be an endomorphism defined by

$$\sigma(f(x)) = f(0).$$

For $r \in R$, $\delta_r : R \to R$ is a σ-derivation defined as

$$\delta_r(a) = ar - r\sigma(a).$$

Then R is not a (σ, δ)-ring. For take $f(x) = xa + b, r = \frac{-b}{xa}$.

Towards the proof of the next Theorem, we require the following:

J. Krempa [5] has investigated the relation between minimal prime ideals and completely prime ideals of a ring R. With this he proved the following:

Theorem 2.4. For a ring R the following conditions are equivalent:

1. R is reduced.
2. R is semiprime and all minimal prime ideals of R are completely prime.
3. R is a subdirect product of domains.

Theorem 2.5. Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R and δ a σ-derivation of R. If R is a (σ, δ)-ring, then $P(R)$ is completely semi-prime.

Proof. As in proof of Theorem (2.2), R is a reduced ring and by using Theorem (2.4), the result follows.

The converse of the above is not true.

Example 2.6. Let F be a field, $R = F \times F$. Let $\sigma : R \to R$ be an automorphism defined as

$$\sigma((a, b)) = (b, a) \text{ for } a, b \in F.$$

Here $P(R)$ is a completely semi-prime ring, as R is a reduced ring. For $r \in F$.

Define $\delta_r : R \to R$ by

$$\delta_r((a, b)) = (a, b)r - r\sigma((a, b)) \text{ for } a, b \in F.$$

Then δ_r is a σ-derivation of R. But R is not a (σ, δ)-ring. For take $A = (1, -1), r = \frac{1}{2}$.

Theorem 2.7. Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R and δ a σ-derivation of R such that R is a (σ, δ)-ring. Then R is a weak (σ, δ)-rigid ring. Conversely a 2-primal weak (σ, δ)-rigid ring is a (σ, δ)-ring.
Proof. See Theorem (3.8) of [1].

Theorem 2.8. Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R and δ a σ-derivation of R such that $\sigma(U) = U$ and $\delta(U) \subseteq U$ where $U \in \text{Min.Spec}(R)$. Then R is a (σ, δ)-ring if and only if for each $U \in \text{Min.Spec}(R)$, $\sigma(U) + \delta(U) = U$ and U is a completely prime ideal of R.

Proof. See Theorem (3.9) of [1].

Theorem 2.9. Let R be a commutative Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R and δ a σ-derivation of R such that R is a (σ, δ)-ring. Then $O(N(R)) = N(O(R))$.

Proof. By Theorem (2.2), we know that R a (σ, δ)-ring is 2-primal. Also $O(N(R)) \subseteq N(O(R))$. We will show that $N(O(R)) \subseteq O(N(R))$. Let $f = \sum_{i=0}^{m} x^i a_i \in N(O(R))$. Then $(f)(O(R)) \subseteq N(O(R))$, and $(f)(R) \subseteq N(O(R))$. Let $((f)(R))^k = 0$, $k > 0$. Then equating leading term to zero, we get
\[(x^m a_m R)^k = 0.\]

After simplification equating leading term to zero, we get
\[x^{km} \sigma^{(k-1)m}(a_m R) \sigma^{(k-2)m}(a_m R) \sigma^{(k-3)m}(a_m R) \ldots (a_m R) = 0.\]

Therefore,
\[\sigma^{(k-1)m}(a_m R) \sigma^{(k-2)m}(a_m R) \sigma^{(k-3)m}(a_m R) \ldots (a_m R) = 0 \subseteq P,\]

for all $P \in \text{Min. Spec}(R)$. This implies that
\[\sigma^{(k-j)m}(a_m R) \subseteq P, \text{ for some } j, 1 \leq j \leq k.\]

Therefore, by using Theorem (2.8)
\[a_m R \subseteq \sigma^{-(k-j)m}(P) \subseteq \sigma(P) + \delta(P) = P.\]

So we have $a_m R \subseteq P$, for all $P \in \text{Min.Spec}(R)$. Therefore, $a_m \in P(R)$ and R being 2-primal implies that $a_m \in N(R)$. Now $x^m a_m \in O(N(R)) \subseteq N(O(R))$ implies that $\sum_{i=0}^{m-1} x^i a_i \in N(O(R))$ and with the same process in a finite number of steps, it can be seen that
\[a_i \in P(R) = N(R), \text{ } 0 \leq i \leq m - 1.\]

Therefore, $f \in O(N(R))$. Hence $N(O(R)) \subseteq O(N(R))$ and result follows. \qed
3. Proof of Main Result

Theorem 3.1. Let R be a commutative Noetherian integral domain which is also an algebra over \mathbb{Q}. Let σ an automorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for all $a \in R$. Then R is a weak (σ, δ)-rigid ring if and only if $O(R) = R[x; \sigma, \delta]$ is a weak $(\overline{\sigma}, \overline{\delta})$-rigid ring.

Proof. Let R be a weak (σ, δ)-rigid ring. Then by Theorem (2.7), R is a (σ, δ)-ring. Also by Theorem (2.9), $O(N(R)) = N(O(R))$. We show that $R[x; \sigma, \delta]$ is a weak $(\overline{\sigma}, \overline{\delta})$-rigid ring. Let $f \in O(R)$ say $f = \sum_{i=0}^m x^i a_i$ be such that $f[\overline{\sigma}(f) + \overline{\delta}(f)] \in N(O(R))$. We use induction on m to prove the result. For $m = 1$, $f = xa_1 + a_0$.

Now $f[\overline{\sigma}(f) + \overline{\delta}(f)] \in N(O(R))$ implies that

$$(xa_1 + a_0)[\overline{\sigma}(xa_1 + a_0) + \overline{\delta}(xa_1 + a_0)] \in N(O(R)) = O(N(R))$$

i.e.,

$$x^2 \sigma^2(a_1) + x \delta(a_1) \sigma(a_1) + x \sigma(a_0) \sigma(a_1) + \delta(a_0) \sigma(a_1) + xa_1 \sigma(a_0) + a_0 \sigma(a_0) + xa_1 \delta(a_1) + xa_1 \delta(a_0) + a_0 x \delta(a_1) + a_0 \delta(a_0) \in O(N(R))$$

or

$$x^2 \sigma^2(a_1) + x \delta(a_1) \sigma(a_1) + x \sigma(a_0) \sigma(a_1) + \delta(a_0) \sigma(a_1) + xa_1 \sigma(a_0) + a_0 \sigma(a_0) + x(x \sigma(a_1) + \delta(a_1)) \delta(a_1) + xa_1 \delta(a_0) + (x \sigma(a_0) + \delta(a_0)) \delta(a_1) + a_0 \delta(a_0) \in O(N(R)).$$

Now coefficient of leading term $\sigma(a_1)(\sigma(a_1) + \delta(a_1)) \in N(R)$, which implies $a_1 \in N(R)$, by Proposition (3) of [6]. Also coefficient of constant term

$$a_0(\sigma(a_0) + \delta(a_0)) + \delta(a_0) (\sigma(a_1) + \delta(a_1)) \in N(R).$$

Now $a_1 \in N(R)$, $\sigma(N(R)) = N(R)$, by Proposition (3) of [6]. Therefore, $\sigma(a_1) \in N(R)$. Also R is commutative and hence 2-primal. Therefore, by Proposition (1.1) of [3], $\delta(a_1) \in N(R)$. Since $N(R)$ is an ideal, so $\delta(a_0)(\sigma(a_1) + \delta(a_1)) \in N(R)$. Therefore, (3.1) implies that $a_0(\sigma(a_0) + \delta(a_0)) \in N(R)$ which gives $a_0 \in N(R)$, as R is a weak (σ, δ)-rigid ring. Hence $f \in O(N(R)) = N(O(R))$.

Suppose the result is true for $m = k$. We prove for $m = k + 1$. Now $f[\overline{\sigma}(f) + \overline{\delta}(f)] \in N(O(R))$ implies that

$$(x^{k+1}a_{k+1} + ... + a_0)[x^{k+1} \sigma(a_{k+1}) + ... + \sigma(a_0) + x^{k+1} \delta(a_{k+1}) + ... + \delta(a_0)] \in N(O(R)) = O(N(R))$$

or

$$x^{2k+2} \sigma^{k+2}(a_{k+1}) + x^{2k+1} \sigma^k(a_{k+1}) \sigma(a_k) + x^{2k+1} \sigma^{k+1}(a_k) \sigma(a_{k+1}) + ... + x^{2k+2} \sigma^{k+1}(a_{k+1}) \delta(a_{k+1}) + ...$$
which gives on rearranging
\[
x^{2k+2}(\sigma^{k+2}(a_{k+1})+\sigma^{k+1}(a_{k+1})\delta(a_{k+1})) + \text{term of } x^{2k+1} + g[\sigma(g)+\delta(g)] \in O(N(R))
\]
where \(g = \sum_{i=0}^{k} x^ia_i \). Hence \(\sigma^{k+2}(a_{k+1})+\sigma^{k+1}(a_{k+1})\delta(a_{k+1}) \in N(R) \) which implies that \(a_{k+1} \in N(R) \). Also coefficient of \(x^{2k+1} \in N(R) \) and so \(g[\sigma(g)+\delta(g)] \in N(R) \). But degree of \(g \) is \(k \), therefore, by induction hypothesis, the result is true for all \(m \).
Converse is obvious.

\[\square\]

REFERENCES

Received: June 11, 2014