Finite Groups Having Exactly 22 Elements of Maximal Order1

Ren Song and Zhangjia Han2

School of Mathematics
Chengdu University of Information Technology
Chengdu, Sichuan 610225, China

Copyright © 2014 Ren Song and Zhangjia Han. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let G be a finite group, $M(G)$ denotes the number of elements of maximal order of G. In this note a finite group G with $M(G) = 22$ is determined.

Mathematics Subject Classification: 20D45, 20E34

Keywords: Finite groups, Classification, Number of elements of maximal order, Thompson’s problem

1 Introduction

For a finite group G, we denote by $M(G)$ the number of elements of maximal order of G, and the maximal element order in G by $k = k(G)$. There is a topic related to one of Thompson’s Conjectures:

Thompson’s Conjecture Let G be a finite group. For a positive integer d, define $G(d) = \{ \{ x \in G \mid \text{the order of } x \text{ is } d \} \}$. If S is a solvable group, $G(d) = S(d)$ for $d = 1, 2, \ldots$, then G is solvable.

1This work is supported by the National Scientific Foundation of China(No:11301426) and Scientific Research Foundation of SiChuan Provincial Education Department(No:14ZA0314).

2Corresponding author.
Recently, some authors have investigated this topic in several articles (see [3], [4]). In particular, in [1] the authors gave a complete classification of the finite group with $M(G) = 30$, and the finite group with $M(G) = 24$ are classified in [2]. In this paper, we consider a finite group G satisfying $M(G) = 22$. Our main result of this paper is:

Main Theorem Suppose G is a finite group having exactly 22 elements of maximal order. Then G is solvable and one of the following holds:

1. if $k = 6$, then $|G| = 2^\alpha \cdot 3^\beta$, where $2 \leq \alpha \leq 5$ and $1 \leq \beta \leq 3$;
2. if $k \in \{23, 46\}$, then $C_G(x) = \langle x \rangle \leq G$. Therefore, $G/C_G(x) \cong \text{Aut}(C_k)$, where $o(x) = k$.

By the above theorem, we have:

Corollary Thompson’s Conjecture holds if G has exactly 22 elements of maximal order.

2 Preliminaries

The following lemma reveals the relationship of $M(G)$ and k.

Lemma 2.1 [4, Lemma 1] Suppose G has exactly n cyclic subgroups of order l, then the number of elements of order l (denoted by $n_l(G)$) is $n_l(G) = n\phi(l)$, where $\phi(l)$ is the Euler function of l. In particular, if n denotes the number of cyclic subgroups of G of maximal order k, then $M(G) = n\phi(k)$.

By above lemma, we have:

Lemma 2.2 If $M(G) = 22$ and k is maximal element order of G, then possible values of n, k and $\phi(k)$ are given in following table:

<table>
<thead>
<tr>
<th>n</th>
<th>$\phi(k)$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3,4,6</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>null</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>23,46</td>
</tr>
</tbody>
</table>

Lemma 2.3 [1, Lemma 8] If the number of elements of maximal order k is m, then there exists a positive integer α such that $|G|$ divides mk^α.

Lemma 2.4 Let G be a finite 2-group. If $\exp(G) = 4$, then there is no group G with $M(G) = 22$.
Finite groups having exactly 22 elements

proof. If G is a nonabelian 2-group with $\text{exp}(G) = 4$ and every x in G of order 2 is contained in $Z(G)$. We prove that $|G| < 64$. Suppose that $|G| \geq 64$. Then G has a subgroup $H \cong C_2 \times C_2 \times C_2 \times C_2 \times C_4$. Since every element of order 2 is contained in $Z(G)$ and $\text{exp}(G) = 4$. Obviously, $n_4(H) = 32$, a contradiction. If G is abelian, let $|G| = 2^t$. Then $2^{t-1} \leq 22$ by [3, Lemma 2.5]. Hence $t \leq 5$ and $|G| \leq 32$. Therefore $|G| = 32$. Now the lemma holds by [1, Lemma 9].

3 Proof of Main Theorem

By the hypothesis $M(G) = 22$, then $k \neq 2, 3$ by [1, Lemma 6]. In the following we prove our theorem case by case for the remaining possible values of k.

case 1 $k = 4$. By Lemma 2.3, in this case G is a 2-group. By Lemma 2.4, such G does not exist.

case 2 $k = 6$. In this case $|G| = 2^a3^b$, where $a > 0$ and $b > 0$ by Lemma 2.3. Let x be an element of order 6. Then $|C_G(\langle x \rangle)| = 2^a \cdot 3^b$. Since there exists no element of order 9 or 4 in $C_G(x)$, we have $v \leq 2$ and $u \leq 2$ by $M(G) = 22$. Since G has exactly 11 cyclic subgroups of order 6, we have $|G : N_G(\langle x \rangle)| = 1, 2, 3, 4, 6, 8$ or 9. If there is an element y of order 6 in G such that $|G : N_G(\langle x \rangle)| = 8$ or 9, then there exists another element z of order 6 in G such that $|G : N_G(\langle x \rangle)| = 1, 2, 3, 4$ or 6. That is to say, G always has an element x of order 6 such that $|G : N_G(\langle x \rangle)| = 1, 2, 3, 4$ or 6. Therefore $|G| |2^5 \cdot 3^3$ since $|G| = |G : N_G(\langle x \rangle)| \cdot |N_G(\langle x \rangle) : C_G(\langle x \rangle)| \cdot |C_G(\langle x \rangle)|$. Thus (1) follows.

case 3 $k \in \{23, 46\}$. Let x be an element of order k. Then $C_G(x) = \langle x \rangle \trianglelefteq G$. Therefore, $G/C_G(x) \cong Aut(C_k)$ and $C_G(x) \cong C_k$. Thus (2) holds.

References

Received: March 25, 2014