Finite Groups with Nine Non-subnormal Subgroups

Aifang Feng
Department of Mathematics, Kunming University
Kunming, 650214, China

Zuhua Liu
Department of Mathematics, Kunming University
Kunming, 650214, China

Copyright © 2014 Aifang Feng and Zuhua Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper, finite groups with nine non-subnormal subgroups are completely classified.

Mathematics Subject Classification: 20D10, 20E48

Keywords: non-subnormal subgroup, conjugate, maximal subgroup, soluble group

1 Introduction
In group theory, there are various results about how the structure of a finite group related to its special subgroups. The structure of groups whose subgroups are all normal (the Dedekind groups) has been completely described in [3]. And the finite groups with one conjugate class of non-normal subgroups are classified in [4]. Moreover, finite groups with one conjugate class of non-subnormal subgroups are classified in [1]. And the authors have classified all groups with at most eight non-subnormal subgroups (see [8]). In this paper, finite groups with nine non-subnormal subgroups are completely classified.
Let G be a finite group. $\mu(G)$ denotes the number of conjugate classes of non-subnormal subgroups of G. If $H \leq G$, we denote by $\mu_G(H)$ the number of G-conjugate classes of proper subgroups of H that are non-subnormal in G. $N(G)$ denotes the number of non-subnormal subgroups of G. $A \rtimes B$ denotes the semidirect product of A and B. The rest of notations are referred to [3].

2 Preliminary Notes

Lemma 2.1 ([1]). Let G be a finite group. Then $\mu(G) = 1$ if and only if G is a finite non-nilpotent inner-abelian group, that is

$$G \cong P \times Q = \langle a, b_1, b_2, \ldots, b_\beta \mid a^{p^n} = 1 = b_1^q = b_2^q = \cdots = b_\beta^q; [b_i, b_j] = 1, i, j = 1, 2, \ldots, \beta;$$

$$b_i^q = b_{i+1}, i = 1, 2, \ldots, \beta - 1; \quad b_\beta^q = b_1^{d_1}b_2^{d_2}\cdots b_\beta^{d_\beta} \rangle,$$

where $f(x) = x^q - d_3x^{q-1} - \cdots - d_2x - d_1$ is an irreducible polynomial over the field \mathbb{F}_q, which divides $x^p - 1$, and $q^\beta \equiv 1 \pmod{p}$.

Lemma 2.2 ([5]). Let G be a finite p-group with cyclic maximal subgroup. Then one of the following holds

1. $G = \langle a | a^{p^n} = 1 \rangle, n \geq 1$.
2. $G = \langle a, b | a^{p^{n-1}} = b^p = 1, [a, b] = 1 \rangle, n \geq 2$.
3. $G = \langle a, b | a^{p^{n-1}} = b^p = 1, a^b = a^{1+p^{n-2}} \rangle, p \neq 2, n \geq 3$.
4. $G = \langle a, b | a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, a^b = a^{-1} \rangle, n \geq 3$.
5. $G = \langle a, b | a^{2^{n-1}} = 1, b^2 = 1, a^b = a^{-1} \rangle, n \geq 3$.
6. $G = \langle a, b | a^{2^{n-1}} = 1, b^2 = 1, a^b = a^{1+2^{n-2}} \rangle, n \geq 4$.
7. $G = \langle a, b | a^{2^{n-1}} = 1, b^2 = 1, a^b = a^{-1+2^{n-2}} \rangle, n \geq 4$.

Lemma 2.3 ([7]). Let G be a finite p-group with cyclic maximal subgroup. Then the maximal subgroups of G with the seven types are following respectively

1. $\langle a^p \rangle$.
2. $\langle b^a \rangle(i = 0, 1, \cdots, p-1), \langle a^p, b \rangle$.
3. $\langle b^a \rangle(i = 0, 1, \cdots, p-1), \langle a^p, b \rangle$.
4. $n > 3: \langle a \rangle, \langle a^2, b \rangle, \langle a^2, ba \rangle; n = 3: \langle a \rangle, \langle b \rangle, \langle ba \rangle$.
5. $\langle a \rangle, \langle a^2, b \rangle, \langle a^2, ba \rangle$.
6. $\langle a \rangle, \langle ba \rangle, \langle a^2, b \rangle$.
7. $\langle a \rangle, \langle a^2, b \rangle, \langle a^2, ba \rangle$.

Lemma 2.4 ([6]). Let G be a finite group with $\mu(G) = 2$, and H, K be non-subnormal and not conjugate in G. Then

1. $H < K$, and H and K are maximal in K and G respectively.
2. H is cyclic, and $K = N_G(K)$.
Lemma 2.5 ([8]). Let G be a finite group, and C be a conjugate class of non-subnormal subgroups of G. Then $|C| \geq 3$.

Lemma 2.6 ([9]). Let G be a finite group and $H \leq G$. If H is non-subnormal and $\mu_G(H) = 0$, then H is a cyclic p-group.

Lemma 2.7 ([8]). Let G be a finite group with $N(G) = 6$. Then

(i) $G \cong \langle a, b, c \mid a^{2^m} = 1 = b^3 = c^3; [b, a] = [b, c] = 1, c^a = c^{-1} \rangle$.

(ii) $G \cong \langle a, b, c \mid a^{2^m} = 1 = b^3 = c^3, [b, a] = [b, c] = 1, c^a = c^{-1} \rangle$, where $q \neq 2, 3$.

3 Main Results

Theorem 3.1. Let G be a finite group with $N(G) = 9$. Then one of the following holds:

(i) $G \cong \langle a, b, c \mid a^{2^m} = b^3 = c^3 = 1, [a, c] = [b, c] = 1, b^a = b^{-1} \rangle$, where $r \neq 2, 3$.

(ii) $G \cong \langle a, b \mid a^{2^m} = b^2 = 1, b^a = b^r \rangle$, where $r \equiv 1 \mod 9$.

(iii) $G \cong \langle a, b, c \mid a^{2^{m-1}} = b^3 = c^3 = 1, [a, b] = [b, c] = 1, c^a = c^{-1} \rangle, m \geq 2$.

(iv) $G \cong \langle a, b, c \mid a^4 = c^3 = 1, b^2 = a^2, a^b = a^{-1}, [b, c] = 1, c^a = c^{-1} \rangle$.

(v) $G \cong \langle a, b, c \mid a^{2^{m-1}} = b^2 = c^3 = 1, [b, c] = 1, a^b = a^{1+2^{m-2}}, c^a = c^{-1} \rangle, m \geq 4$.

Proof. Let G be a finite group with $N(G) = 9$. Then $\mu(G) \leq 3$ by lemma 2.5, and hence G is solvable (see [9]). Clearly G is not nilpotent, thus there is a Sylow subgroup of G is not normal in G since the group with all Sylow subgroups are normal is nilpotent. Let $P \in Syl_p(G)$, and P be not normal in G.

Case 1 $\mu(G) = 1$. Now, $|G| = p^m q^n$ and P is maximal in G by lemma 2.1. Hence $P = N_G(P)$, and $9 = |G : N_G(P)| = |G : P|$, and $q = 3, n = 2$. By Sylow Theorem 9 $\equiv 1 \mod p$, and $p = 2$. So $G \cong \langle a, b, c \mid a^{2^m} = 1 = b^3 = c^3, [b, c] = 1, b^a = c, c^a = b^d \rangle$, where $f(x) = x^3 - d_2 x - d_1$ is an irreducible polynomial over the field \mathbb{F}_3. Since $\langle a^2 \rangle Q < G$, $\langle a^2 \rangle Q < G$ is abelian group by lemma 2.1, and hence $[a^2, b] = 1$. Thus $b = b^a^2 = c^a = b^{d_1} c^{d_2}$, hence $d_1 = 1, d_2 = 0$, and $f(x) = x^2 - 1$ is a reducible polynomial over the field \mathbb{F}_3, which is a contradiction.

Case 2 $\mu(G) = 2$. Let C_1, C_2 be the two conjugate classes of non-subnormal subgroups of G. Then $|C_1| \geq 3, |C_2| \geq 3$ according to Lemma 2.5. Let $H \in C_1, K \in C_2$. Then $H < K$ and $K = N_G(K)$ by lemma 2.4. We assert that $N_G(H) = H$ or $N_G(H) = K$. Otherwise, $H < N_G(H) \triangleleft G$, a contradiction. Thus $|C_2| = |C_1|$, it follows that $|C_1| = 6, |C_2| = 3$ since $|C_1| + |C_2| = 9$. Hence $N_G(H) = H$, and $|K : H| = 2$. However $H < K$ by $|K : H| = 2$, and $H < K \leq N_G(H)$, a contradiction.
Case 3 $\mu(G) = 3$. Let C_1, C_2, C_3 be the three conjugate classes of non-subnormal subgroups of G. Then $|C_1| + |C_2| + |C_3| = 9$. Thus $|C_1| = |C_2| = |C_3| = 3$ since $|C_i| \geq 3, i = 1, 2, 3$, and hence $3 | |G|$. Let $P \in C_1, H \in C_2, K \in C_3$. Then $3 \equiv 1(\text{mod} p)$ by Sylow Theorem, and hence $p = 2$. So $P \in \text{Syl}_2(G)$, and all Sylow subgroups except Sylow 2-subgroups are normal in G. Let $Q \in \text{Syl}_3(G)$. Then $Q \triangleleft G$.

(1) Assume that $P < N_G(P)$. Then $N_G(P) = H \triangleleft K$. Without loss of generality let $N_G(P) = K$. Then $K = N_G(K)$ since $|C_1| = |C_3|$, and hence $|C_1| = |G : K| = 3$, which follows that K is maximal in G.

(i) Suppose that P is maximal in K. Then $|K : P| = r$, where r is an odd prime, since K is solvable. That is $|K| = 2^m r, |G| = 2^m 3r$. Let $K = P \times K_r$, where K_r is the Sylow r-subgroup of K. It is easily to verified that $K_r \leq Z(G)$, and of course, $K_r \not\leq N_G(H)$. If $P < H$, then $K \leq N_G(H)$. It follows that $N_G(H) = K$ since $|C_2| = |C_3| = 3$, thus $H < K$, which contradicts the maximality of P in K. So $\mu_G(H) = 0$, and H is a cyclic 2-group by lemma 2.6. That is $H < P < K$. If $r \neq 3$, then $|Q| = 3$. Let $L = P \times Q$. Then $N(L) = 6$, and $|L| = 2^m 3$, which is a contradiction according to lemma 2.7. If $r = 3$, then $|Q| = 3^2$, and $|G| = 2^m 3^2$. Let $H = L \times Q$. Then $\mu(L) = 1$, and H is self-normalizing in L by lemma 2.1, which contradicts $N_G(H) = K$.

(ii) Suppose that P is not maximal in K. Then we must have $P < H < K$. In fact, if $P < L < K$, and $L \neq H$, then $L \triangleleft G$, and hence $P \triangleleft G$, a contradiction. Thus $\mu_G(P) = 0$, and $P = \langle a | a^{2m} = 1 \rangle$ is cyclic by lemma 2.6. Of course, P and H are maximal in H and K respectively, and $N_G(P) = N_G(H) = N_G(K) = K$ by $|C_1| = |C_2| = |C_3| = 3$. Since H and K are solvable, $|H : P| = r$, and $|K : H| = s$, where r, s are odd primes. We assert that $r = s$. Otherwise $r \neq s$, let $K = P \times K_r \times K_s$, and $H = P \times K_r$, where K_r and K_s be the Sylow r-subgroup and the Sylow s-subgroup of K respectively. Then $P \times K_s$ is also non-subnormal, and $P \times K_s$ is not conjugate to P, H and K, hence $\mu(G) \geq 4$, a contradiction. That is $|H| = 2^m r, |K| = 2^m r^2$. If $K_r = \langle c_1 \rangle \times \langle c_2 \rangle$ is elementary abelian, then $P, H = P \times \langle c_1 \rangle, P \times \langle c_2 \rangle$, and K are all non-subnormal in G, and not conjugate to each other. It follows that $\mu(G) \geq 4$, a contradiction. So $K_r = \langle c | c^2 = 1 \rangle$ is cyclic.

If $r \neq 3$, then $Q = \langle b | b^3 = 1 \rangle$, and hence $G \cong \langle a, b, c | a^{2m} = b^3 = c^2 = 1, [a, c] = [b, c] = 1, b^a = b^{-1} \rangle$, where $r \neq 2, 3$. Conversely, it is easily verified that the non-subnormal subgroups of G are $\langle a \rangle, \langle a \rangle^b, \langle a \rangle^{b^2}, \langle a, c \rangle, \langle a, c \rangle^b, \langle a, c \rangle^{b^2}$, and $\langle a, c \rangle^b, \langle a, c \rangle^{b^2}$. Hence $N(G) = 9$, and Case (i) in Theorem 3.1 holds.

If $r = 3$, then Q is a 3-group with cyclic maximal subgroup, and $|Q| = 3^3$. Suppose that Q is of type (2), (3) of lemma 2.2. Let $Q = \langle b, c | b^2 = b^3 = 1 \rangle$. Then $[a, b] = 1$, and $H = P \times \langle b^2 \rangle$, $K = P \times \langle b \rangle$. Let $M = \langle b^3, c \rangle$, and $N = P \times M$. Then $\mu(N) = 1$, and P is self-normalizing in N, which is a contradiction. Suppose that $Q = \langle b | b^6 = 1 \rangle$. Then $K = P \times \langle b^3 \rangle$, and $G \cong \langle a, b | a^{2m} = b^{27} = 1, b^a = b^r \rangle$. Since $[a, b^3] = 1$, $b^3 = (b^3)^a = (b^3)^3 = (b^r)^3 = b^{3r}$,
hence $3r \equiv 3 \pmod{27}$, that is $r \equiv 1 \pmod{9}$. Conversely, it is easily verified that the non-subnormal subgroups of G are $\langle a \rangle, \langle a \rangle^b, \langle a \rangle^{b^2}, \langle a, b^3 \rangle, \langle a, b^3 \rangle^b, \langle a, b^3 \rangle^{b^2}$, and $\langle a, b^9 \rangle, \langle a, b^9 \rangle^b, \langle a, b^9 \rangle^{b^2}$. Hence $N(G) = 9$, and Case (ii) in Theorem 3.1 holds.

(2) Assume that $P = N_G(P)$, then $G = P \rtimes Q$, where $|Q| = 3$, since $|C_1| = |G : N_G(P)| = |G : P| = 3$. Hence $N_G(H) = N_G(K) = P$ by $|C_2| = |C_3| = 3$, it follows that $H, K < P$. If $H < K < P$, then $N(K \rtimes Q) = 6$, which contradicts lemma 2.7. So H and K are all cyclic maximal subgroups of P, which implies that P has at least two cyclic maximal subgroups. According to lemma 2.3, P is of type (2), or (4), or (6) of lemma 2.2. Let $P = \langle a, b \rangle$, where $a^{2^{m-1}} = 1$. Now, $H = \langle a \rangle$, and $K = \langle ba \rangle$ by lemma 2.3, and clearly $\mu(H \rtimes Q) = 1, \mu(K \rtimes Q) = 1$. Let $Q = \langle c | c^3 = 1 \rangle$, $B = \langle b \rangle$. Then $B \triangleleft G$ by $\mu(G) = 3$, hence $B \triangleleft BQ = M$ since B is the Sylow 2-subgroup of M. Thus $M = B \times Q$, and $[b, c] = 1$.

Suppose that P is of type (2) of lemma 2.2. That is $P = \langle a, b | a^{2^{m-1}} = b^2 = 1, [a, b] = 1 \rangle$, $n \geq 2$. Now, $G \cong \langle a, b, c | a^{2^{m-1}} = b^2 = c^3 = 1, [a, b] = [b, c] = 1, c^a = c^{-1} \rangle, m \geq 2$. Conversely, it is easily verified that the non-subnormal subgroups of G are $\langle a, b \rangle, \langle a, b \rangle^c, \langle a, b \rangle^{c^2}, \langle a \rangle, \langle a \rangle^c, \langle a \rangle^{c^2}$, and $\langle ba \rangle, \langle ba \rangle^c, \langle ba \rangle^{c^2}$. Hence $N(G) = 9$, and Case (iii) in Theorem 3.1 holds.

Suppose that P is of type (4) of lemma 2.2. Since P has at least two cyclic maximal subgroups, $m = 3$ by lemma 2.3. That is $P = \langle a, b | a^4 = 1, b^2 = a^2, a^b = a^{-1} \rangle$, and $G \cong \langle a, b, c | a^4 = c^3 = 1, b^2 = a^2, a^b = a^{-1}, [b, c] = 1, c^a = c^{-1} \rangle$. Conversely, it is easily verified that the non-subnormal subgroups of G are $\langle a, b \rangle, \langle a, b \rangle^c, \langle a, b \rangle^{c^2}, \langle a \rangle, \langle a \rangle^c, \langle a \rangle^{c^2}$, and $\langle ba \rangle, \langle ba \rangle^c, \langle ba \rangle^{c^2}$. Hence $N(G) = 9$, and Case (iv) in Theorem 3.1 holds.

Suppose that P is of type (6) of lemma 2.2. That is $P = \langle a, b | a^{2^{m-1}} = 1, b^2 = 1, a^b = a^{1+2^{m-2}}, m \geq 4$. Now, $G \cong \langle a, b, c | a^{2^{m-1}} = b^2 = c^3 = 1, [b, c] = 1, a^b = a^{1+2^{m-2}}, c^a = c^{-1} \rangle, m \geq 4$. Conversely, it is easily verified that the non-subnormal subgroups of G are $\langle a, b \rangle, \langle a, b \rangle^c, \langle a, b \rangle^{c^2}, \langle a \rangle, \langle a \rangle^c, \langle a \rangle^{c^2}$, and $\langle ba \rangle, \langle ba \rangle^c, \langle ba \rangle^{c^2}$. Hence $N(G) = 9$, and Case (v) in Theorem 3.1 holds.

\[\square \]

References

Received: February 17, 2014