Some Properties of γ-Sets in a Ring

Cristopher John S. Rosero

Mathematics and ICT Department
Cebu Normal University
Cebu City, Philippines

Michael P. Baldado, Jr.\(^1\)

Mathematics Department
Negros Oriental State University
Dumaguete City, Philippines

Copyright © 2014 Cristopher John S. Rosero and Michael P. Baldado, Jr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be a ring with identity 1_R. A subset J of R is called a γ-set if for every $a \in R \setminus J$, there exists $b, c \in J$ such that $a + b = 0$ and $ac = 1_R = ca$. A γ-set of minimum cardinality is called a minimum γ-set.

In this study, we introduced the concept of γ-sets in a ring and presented a few of its properties. Moreover, we gave a sharp upper bound of the number of minimum γ-sets in a finite division ring.

Mathematics Subject Classification: 20Dxx

Keyword: \mathcal{D}-set, γ-sets, rings, division ring

1 Introduction

A dominating set of a graph $G = (V, E)$ is a subset S of V such that for each $v \in V \setminus S$ there exists $u \in S$ with $vu \in E$. Rosero et al. [3] attempted to extend

\(^1\)Corresponding author
the concept of dominating set to some mathematical structures. Thus, the concept of \(\mathcal{D} \)-sets in a group was introduced. In [3], they gave some properties of a \(\mathcal{D} \)-set and in [2], they give the number of \(\mathcal{D} \)-sets and the number of minimum \(\mathcal{D} \)-sets in finite groups. In this paper, we introduced and studied a parallel concept in rings. We call the new concept a \(\gamma \)-set in a ring.

A binary operation on a nonempty set \(G \) is a function \(G \times G \rightarrow G \). A semi-group is a nonempty set \(G \) together with a binary operation which is associative, that is, \(a(bc) = (ab)c \) for all \(a, b, c \in G \). A group is a semi-group \(G \) that satisfies the following properties: (1) There is an element \(e \in G \) with the property that \(ge = g = eg \) for all \(g \in G \); (2) For each \(g \in G \), there exists \(h \in G \) such that \(gh = e = hg \).

As found in [1], the Multiplication Principle states that if an event \(E \) can be decomposed into \(r \) ordered events \(E_1, E_2, \ldots, E_r \), and that there are \(n_1 \) ways for the event \(E_1 \) to occur, \(n_2 \) ways for the event \(E_2 \) to occur, \(\ldots, n_r \) ways for the event \(E_r \) to occur. Then the total number of ways for event \(E \) to occur is \(n_1n_2\cdots n_r \).

You may refer to [4] for the succeeding concepts and notations that were not discussed here.

2 Preliminary Results

We now give some properties of a \(\gamma \)-set of a ring \(R \). We denote by \(T_R \) the set of all \(\gamma \)-sets of \(R \). We note that \(T_R \neq \emptyset \) since \(R \) is a \(\gamma \)-set. The next result shows that the set of all \(\gamma \)-sets in a ring is a semi-group under the operation union.

Theorem 2.1 Let \(R \) be a ring with identity \(1_R \). Let \(T_R \) be the set of all \(\gamma \)-sets of \(R \) and \(T_R^C \) be the set of all \(J^C \) such that \(J \) is a \(\gamma \)-sets of \(R \). Then

1. The set \(T_R \) is a semi-group under the set operation union;
2. The set \(T_R^C \) is a semi-group under the set operation intersection.

Proof: (1) Let \(I, J \in T_R \) and consider \(I \cup J \). Let \(x \in R \setminus (I \cup J) = I^C \cap J^C \). Then \(x \in J^C \). Since \(J \) is a \(\gamma \)-sets, there exists \(y, z \in J \subseteq I \cup J \) such that \(x + y = 0 \) and \(xz = 1_R = zx \). This shows that \(I \cup J \) is a \(\gamma \)-sets of \(R \). Since union of sets is associative, \(T_R \) is a semi-group.

(2) Next, let \(H, K \in T_R^C \). Then \(H = I^C \) and \(K = J^C \) for some \(I, J \in T_R \). Consider \(H \cap K = (I \cup J)^C \). Since \(I, J \in T_R \), by (1) \(I \cup J \in T_R \). Hence, \(H \cap K = (I \cup J)^C \in T_R^C \). Since intersection of sets is associative, \(T_R^C \) is a semi-group. \(\blacksquare \)

What elements of a ring \(R \) are necessarily in every \(\gamma \)-set \(J \) of \(R \)? The next result tells us.
Theorem 2.2 Let \(R \) be a ring with identity \(1_R \) and \(J \) be a \(\gamma \)-set of \(R \).

1. If \(a \in R \) with \(2a = 0 \), then \(a \in J \).

2. If \(a \in R \) with \(a^2 = 1 \), then \(a \in J \).

3. \(0, 1_R \in J \).

Proof: (1) Let \(a \in R \) with \(2a = 0 \) and \(a \notin J \). Since \(J \) is a \(\gamma \)-set, there exists \(b \in J \) such that \(a + b = 0 \). Hence, \(a + a = 2a = 0 = a + b \), i.e. \(a = b \). This is a contradiction.

(2) Let \(a \in R \) with \(a^2 = 1 \) and \(a \notin J \). Since \(J \) is a \(\gamma \)-set, there exists \(b \in J \) such that \(ab = 1_R = ba \). Hence, \(aa = a^2 = 1_R = ab \), i.e. \(a = b \). This is a contradiction.

(3) Since \((1_R)^2 = 1_R \), by (2) \(1_R \in J \). Similarly, since \(2(0) = 0 \), we have by (1) \(0 \in J \). \(\blacksquare \)

Theorems 2.3 and 2.4 give some of the conditions wherein a ring \(R \) has a unique \(\gamma \)-set, i.e., \(|T_R| = 1 \).

Theorem 2.3 Let \(R \) be a ring with identity \(1_R \) and \(J \) be a \(\gamma \)-set of \(R \). If \(2a = 0 \) for all \(a \in R \), then \(|T_R| = 1 \).

Proof: Recall that \(R \in T_R \). Hence, \(|T_R| \geq 1 \). Suppose \(|T_R| \neq 1 \), i.e. \(|T_R| > 1 \).

Let \(S \in T_R \) with \(S \neq R \). Let \(x \in R \setminus S \). Since \(S \) is a \(\gamma \)-set, there exists \(y \in S \) such that \(x + y = 0 \). This implies that there exists \(x \in R \) with \(x + y = 0 \) and \(x \neq y \). This is a contradiction. Hence, the assertion follows. \(\blacksquare \)

Theorem 2.4 Let \(R \) be a ring with identity \(1_R \) and \(J \) be a \(\gamma \)-set of \(R \). If \(a^2 = 1_R \) for all \(a \in R \), then \(|T_R| = 1 \).

Proof: Proved similarly. \(\blacksquare \)

We denote by \(1_R \) the multiplicative identity of all the ring structures mentioned in the succeeding discussions. Theorem 2.5 characterizes ring with unique \(\gamma \)-set.

Theorem 2.5 Let \(R \) be a division ring and \(J \) be a \(\gamma \)-set of \(R \). If \(|T_R| = 1 \), then \(2a = 0 \) or \(a^2 = 1_R \) for all \(a \in R \).

Proof: Assume that there exists \(a \in R \) with \(2a \neq 0 \) and \(a^2 \neq 1_R \). If \(a + a = 2a \neq 0 \), then there exists \(b \in R \) with \(b \neq a \) and \(a + b = 0 = b + a \). Note that \(a \neq 0 \) since \(2a \neq 0 \). Since \(R \) is a division ring, there exists \(c \in R \) such that \(ac = 1_R = ca \). Since \(a^2 = 1_R \), \(c \neq a \). Now, consider \(J = R \setminus \{a\} \). Clearly, \(J \) is a \(\gamma \)-set. Hence, \(|T_R| > 1 \), i.e. \(|T_R| \neq 1 \). \(\blacksquare \)
Theorem 2.6 Let J be a γ-set in R and $u \in R$. Then $u \in R \setminus J$ if and only if there exists $v \in R$ such that $uv = 1_R = vu$ and $u \neq v$.

Proof: Suppose $u \in R \setminus J$, where J is a γ-set. Then there exists $v \in J$ such that $uv = 1 = vu$. Suppose $u = v$. Then $uv = uu = u^2 = 1$ which implies that $u \in J$. This is a contradiction. Thus $u \neq v$. The converse is trivial. \blacksquare

Theorem 2.7 Let R be a ring with identity 1_R. Then $a \not\in R \setminus J$ for all γ-set J in R if $a \in R$ is a zero divisor.

Proof: Suppose $a \in R$ is a zero divisor (which implies that $a \neq 0$). Then there exists $b \neq 0$ in R such that $ab = 0$. Suppose there exists $c \in R$ such that $ac = 1 = ca$. Then $0 = c0 = c(ab) = (ca)b = 1b = b$, which is a contradiction. Thus, by the previous theorem, $a \not\in R \setminus J$. \blacksquare

3 Number of Minimum γ-Sets in a Finite Division Ring

Theorem 3.1 Let R be a ring with identity 1_R and $a \in R$. If there exists $b \in R$ with $b \neq a$ such that $ab = 1_R = ba$, then there exists $c \in R$ with $c \neq a$ and $a + c = 0$. Hence, $R \setminus \{a\}$ is a γ-set.

Proof: Let R be a ring with identity 1_R and $a \in R$. Suppose that there exists $b \in R$ with $b \neq a$ such that $ab = 1_R = ba$ (this would imply that $a \neq 0$). Assume further that for all $c \in R$ with $c \neq a$, $a + c \neq 0$. If for all $c \in R$ with $c \neq a$, $a + c \neq 0$, then we must have $a + a = 0$. This is a contradiction. Hence, the theorem follows. \blacksquare

We call the pair a and b of Theorem 3.1 as super-couple. In the succeeding discussions, we are motivated by the problem of knowing how many minimum γ-sets and how many γ-sets a finite division ring have.

Theorem 3.2 Let R be a ring with identity 1_R and suppose that R has no zero divisors. Let J be a γ-set of R, and $a \in J$. If there exists $b \in J$ with $b \neq a$ such that $ab = 1_R$, then either, there exists $c \in J$ with $c \neq a$ and $a + c = 0$, or there exists $e \in J$ with $b + e = 0$. Hence, $J \setminus \{a\}$ or $J \setminus \{b\}$ is also a γ-set of R.

Proof: Let R be with 1_R and suppose that R has no zero divisors and J be a γ-set of R. Let $a \in J$ and assume that there exists $b \in R$ with $b \neq a$ such that $ab = 1_R$. (This implies that $a \neq 0$.) If there exists $c \in J$ with $c \neq a$ such
that \(a + c = 0 \), then we are done. So we assume that for all \(c \in J \) with \(c \neq a \), \(a + c \neq 0 \). If for all \(c \in J \) with \(c \neq a \), \(a + c \neq 0 \), then there exists \(d \in R \setminus J \) with \(a + d = 0 \). Since \(d \in R \setminus J \) and \(J \) is a \(\gamma \)-set, there exists \(e \in J \) such that \(de = 1_R \). Thus, \(0 = 0e = (a + d)e = ae + de = ae + 1_R \), i.e., \(ae = -1_R \). Hence, \(a(b + e) = ab + ae = 1_R + (-1_R) = 0 \). Since \(a \neq 0 \) and \(R \) has no zero divisors, \(b + e = 0 \). Hence, the theorem follows.

Theorem 3.2 suggests that every super-couple determines a \(\gamma \)-set, in the same way as in [2] that every non-involution determines a \(\mathcal{S} \)-set.

Let \(R \) be a division ring and \(T = \{0\} \cup \{t \in R : t^2 = 1_R\} \). We note that if \(x \in R \setminus T \), then \(x \neq x^{-1} \). Since \(x \) and \(x^{-1} \) must be in \(R \setminus T \) for all \(x \in R \setminus T \), \(|R \setminus T| \) must be even. We denote by \(c \) the number \(|R \setminus T|/2 \) and we call it the \(c \)-number of \(R \).

Lemma 3.3 Let \(R \) be a division ring and \(T = \{0\} \cup \{t \in R : t^2 = 1_R\} \). Define a relation \(\sim \) on \(R \setminus T \) by \(x \sim y \) if and only if \(x = y \) or \(xy = 1_R \). Then \(R \) is an equivalence relation on \(R \setminus T \).

Proof: Let \(R \) be a division ring and \(T = \{0\} \cup \{t \in R : t^2 = 1_R\} \). Define a relation \(\sim \) on \(R \setminus T \) by \(x \sim y \) if and only if \(x = y \) or \(xy = 1_R \). Since \(x = x \) for all \(x \in R \setminus T \), \(x \sim x \) for all \(x \in R \setminus T \), i.e., \(\sim \) is reflexive. If \(x \sim y \), then \(xy = 1_R = yx \), i.e., \(y \sim x \). Hence, \(\sim \) is symmetric. Finally, if \(x \sim y \) and \(y \sim z \), then \(xy = 1_R \) and \(yz = 1_R = zy \). Thus, \(xy = zy \), i.e., \(x = z \). If \(x = z \), then \(x \sim z \). This shows that \(\sim \) is transitive. Accordingly, \(R \) is an equivalence relation on \(R \setminus T \).

Remark 3.4 The equivalence relation \(\sim \) in \(R \setminus T \) of Lemma 3.3 partitions \(R \setminus T \) into equivalence classes \(\mathcal{C} = \{\{x, x^{-1}\} : x \in R \setminus T\} \). If \(R \) is finite, then we denote this partition by \(\mathcal{C} = \{A_1, A_2, \ldots, A_c\} \).

Theorem 3.5 Let \(R \) be a division ring. \(E \) is a minimum \(\gamma \)-set of \(R \) if and only if \(E = T \cup \{a_1, a_2, \ldots\} \) where \(a_i \in A_i \) for all \(i \). In particular, if \(R \) is finite, then \(E \) is a minimum \(\gamma \)-set of \(R \) if and only if \(E = T \cup \{a_1, a_2, \ldots, a_c\} \) where \(a_i \in A_i \) for all \(i = 1, 2, \ldots, c \) (where \(\{A_1, A_2, \ldots, A_c\} \) is the partition of \(R \setminus T \) in the sense of Remark 3.4).

Corollary 3.6 Let \(R \) be a finite division ring and \(J \) be a minimum \(\gamma \)-set of \(R \). Then \(|J| = |T| + (|R \setminus T|)/2 \).

Proof: Let \(J \) be a minimum \(\gamma \)-set and \(T = \{0\} \cup \{t \in R : t^2 = 1_R\} \). Then by Theorem 3.5, \(J = T \cup \{a_1, a_2, \ldots, a_c\} \) for some \(a_1 \in A_1, a_2 \in A_2, \ldots, a_c \in A_c \). Therefore, \(|J| = |T| + (|R \setminus T|)/2 \).
The index minimum of a finite ring R is the number of minimum γ-sets of R and is denoted by $\text{ind}(R)$. The next result gives an upper bound on the number of minimum γ-set of a finite division ring.

Corollary 3.7 Let R be a finite division ring. Then $\text{ind}(R) \leq 2^c$ where c is the c-number of R.

Proof: Let J be a minimum γ-set and $T = \{0\} \cup \{t \in R : t^2 = 1_R\}$. Then by Theorem 3.5, $J = T \cup \{a_1, a_2, \ldots, a_c\}$ for some $a_1 \in A_1, a_2 \in A_2, \ldots, a_c \in A_c$. By Theorem 3.2, the number of ways to choose a_i is either 1 or 2 for all $i = 1, 2, \ldots, c$. Therefore, the number of ways to choose a minimum γ-set, by Multiplication Principle, is less than or equal $|A_1| \cdot |A_2| \cdots |A_c| = 2 \cdot 2 \cdot 2 \cdots 2 = 2^c$. ■

The bound given in Corollary 3.7 is sharp. Equality is attained if for all $x \in R \setminus T$, $x^{-1} = -x$, for example $\text{ind}(\mathbb{Z}_5) = 2^1$, note that c here is equal to 1.

Conjecture 3.8 Let R be a finite division ring. Then $|T_R| \leq 3^c$ where c is the c-number of R. ■

References

Received: October 15, 2014; Published: December 8, 2014