H-Transversals in H-Groups

Swapnil Srivastava

Department of Mathematics & Statistics
SHIATS, Allahabad
U.P., India-211007

Punish Kumar

Department of Mathematics & Statistics
SHIATS, Allahabad
U.P., India-211007

Copyright © 2014 Swapnil Srivastava and Punish Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we have defined the concept of H-subgroup and H-transversal in an H-group and then we have shown that there is a canonical H-group structure on $\tilde{p}(G)$ with respect to which the inclusion $\tilde{p}(G) \to G$ is an H-subgroup of an H-group (G, μ) where map \tilde{p} be an H-transversal.

Mathematics Subject Classification: 20J99

Keywords: H-transversal; H-subgroup; H-group

1 Introduction

Let G be a group with identity e. A map $\tilde{p} : G \to G$ satisfying the following properties (i) $\tilde{p}(e) = e$ (ii) $\tilde{p}^2 = \tilde{p}$ (iii) $\tilde{p}(g_1 g_2) = \tilde{p}(\tilde{p}(g_1) g_2)$ is called a \tilde{p}-map. Let H be a subgroup of G and S be a right transversal to H in G. Then $G = HS$. Thus each element g of G can be uniquely written as
where \(h \in H \) and \(x \in S \). Suppose \(x, y \in S \) and \(h \in H \). Then a map \(\tilde{p} : G \to G \) defined by \(\tilde{p}(g) = x \) is a \(\tilde{p} \)-map. For a \(\tilde{p} \)-map on \(G \), the subset \(H = \{ g : \tilde{p}(g) = e \} \) of \(G \) is a subgroup of \(G \) and the subset \(S = \{ \tilde{p}(g) : g \in G \} \) is a right transversal (with identity) of \(H \) in \(G \) \cite{5}. Ramji Lal \cite{4} in his paper 'Transversals in Groups' have studied transversals in much more detail. Ungar and Foguel \cite{3} has also given a way of decomposition of a group through an involution of a group into a twisted subgroup and a subgroup.

In this paper, using homotopy theory and taking \(\tilde{p} \) to be continuous, we have defined the concept of \(H \)-subgroup and \(H \)-transversal. We have shown that there is a canonical \(H \)-group structure on \(\tilde{p}(G) \) with respect to which the inclusion \(\tilde{p}(G) \hookrightarrow G \) is an \(H \)-subgroup of an \(H \)-group \((G, \mu) \) where map \(\tilde{p} \) be an \(H \)-transversal.

Note: Throughout the paper \(\approx \) represents homotopy between two maps.

\section{H-Space}

In the present section, we have defined topological group, \(H \)-space, \(H \)-group, \(H \)-map, \(H \)-subgroup etc \cite{1,2}.

\textbf{Definition 2.1.} A \textbf{topological group} \(G \) is a group that is also a topological space, satisfying the requirements that the map of \(G \times G \) into \(G \) sending \(x \times y \) into \(x.y \), and the map of \(G \) into \(G \) sending \(x \) into \(x^{-1} \), are continuous.

\textbf{Definition 2.2.} A nonempty topological space with a base point is called a pointed topological space.

\textbf{Definition 2.3.} A pointed topological space \(G \) with base point \(e_0 \) together with a continuous multiplication \(\mu : G \times G \to G \) for which the unique constant map \(c : G \to G \) defined by \(c(x) = e_0 \), is a homotopy identity, that is, each composite \(G \overset{(c \times 1)}{\to} G \times G \overset{\mu}{\to} G \) and \(G \overset{(1 \times c)}{\to} G \times G \overset{\mu}{\to} G \) is homotopic to identity map \((1_G : G \to G)\), is called an \textbf{H-space}.

\textbf{Definition 2.4.} Let \(G \) be an \(H \)-space. The continuous multiplication \(\mu : G \times G \to G \) is said to be \textbf{homotopy associative} if the following diagram

\[
\begin{array}{ccc}
G \times G \times G & \overset{(\mu \times 1)}{\to} & G \times G \\
(1 \times \mu) \downarrow & & \downarrow \mu \\
G \times G & \overset{\mu}{\to} & G
\end{array}
\]

is homotopy commutative i.e \(\mu \circ (\mu \times 1) \approx \mu \circ (1 \times \mu) \).
Definition 2.5. Let G be an H-space. A continuous function $\phi : G \to G$ is called a homotopy inverse for G and μ if each of the composites $G \xrightarrow{(\phi \times 1)} G \times G \xrightarrow{\mu} G$ and $G \xrightarrow{(1 \times \phi)} G \times G \xrightarrow{\mu} G$ is homotopic to homotopy identity $c : G \to G$.

Definition 2.6. A homotopy associative H-space with a homotopy inverse satisfies the group axioms upto homotopy. Such a pointed space is called an H-group.

Example 2.7. Any topological group is an H-group.

Definition 2.8. The continuous multiplication $\mu : G \times G \to G$ in an H-group G is said to be homotopy abelian if the diagram

$$
\begin{array}{ccc}
G \times G & \xrightarrow{T} & G \times G \\
\mu \downarrow & & \mu \downarrow \\
G & \underset{\sim}{\longrightarrow} & G
\end{array}
$$

is commutative upto homotopy i.e $\mu \circ T \approx \mu$ where $T(p_1, p_2) = (p_2, p_1)$.

Definition 2.9. An H-group with homotopy abelian multiplication is called an abelian H-group.

Definition 2.10. If G and G' are H-groups with multiplication μ and μ' respectively. A continuous map $\alpha : G \to G'$ is called a homomorphism if the diagram

$$
\begin{array}{ccc}
G \times G & \xrightarrow{\mu} & G \\
(\alpha, \alpha) \downarrow & & \downarrow \alpha \\
G' \times G' & \xrightarrow{\mu'} & G'
\end{array}
$$

is commutative upto homotopy.

Definition 2.11. If G and G' are H-groups with multiplication μ and μ' respectively. A homomorphism $\alpha : G \to G'$ is called an H-map if the diagram

$$
\begin{array}{ccc}
G & \xrightarrow{c} & G \\
\alpha \downarrow & & \downarrow \alpha \\
G' & \xrightarrow{c'} & G'
\end{array}
$$
is commutative up to homotopy that is $\alpha \circ c \approx c' \circ \alpha$ where c and c' are homotopy identity for G and G' respectively.

Definition 2.12. An equivalence class of monomorphism in the category of H-groups is called an H-subgroup. More explicitly, let (G, μ) be an H-group. An H-subgroup is an H-group (K, μ) together with an H-map $\phi : K \to G$ if given any H-group (L, η) and two H-maps $f_1, f_2 : L \to K$ such that $\phi \circ f_1 \approx \phi \circ f_2 \Rightarrow f_1 \approx f_2$. Thus $[\phi]$ is a class of monomorphisms in the category of H-groups (objects are H-groups and morphisms are equivalence class of H-maps). This described a subgroup as an equivalence class of H-maps.

Definition 2.13. Consider the set $S = \{ \phi : K \to G \text{ is an } H\text{-map} : (K, \nu) \}$ is an H-subgroup of an H-group (G, μ). Define two H-maps $\phi_1 : K_1 \to G$ and $\phi_2 : K_2 \to G$ equivalent if there exists H-maps $h_1 : K_1 \to K_2$ and $h_2 : K_2 \to K_1$ such that $h_2 \circ h_1 \approx I_{K_1}$, $h_1 \circ h_2 \approx I_{K_2}$, $\phi_2 \circ h_1 \approx \phi_1$ and $\phi_1 \circ h_2 \approx \phi_2$.

Proposition 2.14. Let (X, x_0) and (Y, y_0) be two pointed topological spaces. Then $\Omega X = \{ \omega : \omega : I \to X \text{ is a loop based at } x_0 \}$ is an H-group with continuous multiplication μ. Similarly $\Omega Y = \{ \omega : \omega : I \to Y \text{ is a loop based at } y_0 \}$ is an H-group with continuous multiplication ν. Let $f : (Y, y_0) \to (X, x_0)$ is a continuous map. Then $(\Omega Y, \nu)$ is an H-subgroup together with an H-map $(\Omega Y, \nu) \xrightarrow{\Omega f} (\Omega X, \mu)$.

Proof: Let $(Z, +)$ be any H-group and $h_1, h_2 : (Z, +) \to \Omega Y$ are two H-maps given by $h_1(n) = \sigma^n, h_2(n) = \tau^n$.

Let $\sigma, \tau \in \Omega Y$ and $f \circ \sigma, f \circ \tau$ are in same path component of ΩX then we have $(Z, +) \xrightarrow{h_1} \Omega Y \xrightarrow{\Omega f} \Omega X$ and $(Z, +) \xrightarrow{h_2} \Omega Y \xrightarrow{\Omega f} \Omega X$ are path homotopic, that is, $\Omega f \circ h_1 \approx_p \Omega f \circ h_2$ because there is a path $\chi : I \to \Omega X$ such that $\chi(0) = f \circ \sigma$ and $\chi(1) = f \circ \tau$.

Now define $\chi : Z \times I \to \Omega X$ by $\chi(n, t) = (\chi(t))^n$.

Then $\chi(n, 0) = (\chi(0))^n = (f \circ \sigma)^n = (f \circ \sigma^n) = (\Omega f \circ h_1)(n)$

and $\chi(n, 1) = (\chi(1))^n = (f \circ \tau)^n = (f \circ \tau^n) = (\Omega f \circ h_2)(n)$

If $f \circ \sigma$ and $f \circ \tau$ lies in the same path component then σ and τ also lies in the same path component.

Now $\Omega f \circ h_1 \approx_p \Omega f \circ h_2 \Rightarrow f \circ \sigma^n \approx_p f \circ \tau^n \Rightarrow \sigma^n \approx_p \tau^n \Rightarrow h_1(n) \approx_p h_2(n) \Rightarrow h_1 \approx_p h_2$.

Thus ΩY is an H-subgroup with H-map $\Omega f : \Omega Y \to \Omega X$.

Swapnil Srivastava and Punish Kumar
3 H-Transversal

In this section, by defining H-transversal, we have shown that there is a canonical H-group structure on \(\tilde{p}(G) \) with respect to which the inclusion \(\tilde{p}(G) \hookrightarrow G \) is an H-subgroup of \((G, \mu)\). (theorem 3.2)

Definition 3.1. An H-transversal in an H-group \((G, \mu)\) is a continuous identity preserving map \(\tilde{p} : G \to G \) such that

(i) \(\tilde{p}^2 \approx \tilde{p} \)

(ii) \(\mu \circ \tilde{p} \times \tilde{p} \approx \tilde{p} \circ \mu \circ (\tilde{p} \times I_G) \)

Theorem 3.2. Let \((G, \mu)\) be an H-group with base point identity element \(e\) of the group \(G\). Let \(\tilde{p} \) be an H-transversal in an H-group \((G, \mu)\). Then there is a canonical H-group structure on \(\tilde{p}(G) \) with respect to which the inclusion \(\tilde{p}(G) \hookrightarrow G \) is an H-subgroup of \((G, \mu)\).

Proof: From the definition of H-transversal, we have \(\mu \circ \tilde{p} \times \tilde{p} \approx \tilde{p} \circ \mu \circ (\tilde{p} \times I_G) \)

Thus there is a homotopy \(H : G \times G \times I \to G \) such that

\[
H(\{g_1, g_2\}, 0) = \mu(\tilde{p}(g_1), \tilde{p}(g_2)) \\
H((g_1, g_2), 1) = \tilde{p}(\mu(\tilde{p}(g_1), \tilde{p}(g_2))) \quad \text{for all } g_1, g_2 \in G
\]

Define a product \(\nu : \tilde{p}(G) \times \tilde{p}(G) \to \tilde{p}(G) \) by

\[
\nu(\tilde{p}(g_1), \tilde{p}(g_2)) = H((\tilde{p}(g_1), \tilde{p}(g_2)), 1) \\
= \tilde{p}(\mu(\tilde{p}(g_1), \tilde{p}(g_2))) \\
= (\mu(\tilde{p}(g_1), \tilde{p}(g_2))) \\
= (\tilde{p} \circ \mu)(\tilde{p}(g_1), \tilde{p}(g_2))
\]

We show that \((\tilde{p}(G), \nu)\) is an H-group. Since \(\tilde{p} \) and \(\mu \) are continuous so is \(\nu \).

Now,

(i) Since \(G \) is an H-group so the constant map \(c_G : G \to G \) given by \(c_G(g) = e \)

is a homotopy identity that is, \(\mu \circ (c_G \times 1_G) \) is homotopic to identity map \(1_G \)

and similarly \(\mu \circ (1_G \times c_G) \) is also homotopic to identity map \(1_G \)

Now for \(\tilde{p}(g) \in \tilde{p}(G) \)

\((\mu \circ (c_G \times 1_G))\tilde{p}(g) = \mu \circ (c_G(\tilde{p}(g)), \tilde{p}(g)) = \mu(e, \tilde{p}(g)) \)

Let \(c_{\tilde{p}(G)} : \tilde{p}(G) \to \tilde{p}(G) \) denote constant map on \(\tilde{p}(G) \) defined by \(c_{\tilde{p}(G)}(\tilde{p}(g)) = \tilde{p}(e) = e \). Replacing \(G \) above by \(\tilde{p}(G) \). We have

\[
(\nu \circ (c_{\tilde{p}(G)} \times 1_{\tilde{p}(G)}))(\tilde{p}(g)) = (\nu((c_{\tilde{p}(G)}(\tilde{p}(g)), \tilde{p}(g))))
\]

\[
= \nu(e, \tilde{p}(g)) \\
= \nu(\tilde{p}(e), \tilde{p}(g)) \\
= (\tilde{p} \circ \mu)(\tilde{p}(e), \tilde{p}(g)) \\
= \tilde{p}(\mu(\tilde{p}(e), \tilde{p}(g))) \\
= \tilde{p}(\mu(c_{\tilde{p}(G)} \times 1_{\tilde{p}(G)}))\tilde{p}(g) \\
= \tilde{p}(\mu(c_G \times 1_G))\tilde{p}(g) \\
\approx \tilde{p}(1_G(\tilde{p}(g))) \\
\approx \tilde{p}(\tilde{p}(g)) \\
\approx \tilde{p}(g)
\]
\[\approx 1_{\tilde{p}(G)}(\tilde{p}(g)) \]
Thus \(\nu \circ (c_{\tilde{p}(G)} \times 1_{\tilde{p}(G)}) \approx 1_{\tilde{p}(G)} \)
Similarly, \(\nu \circ (1_{\tilde{p}(G)} \times c_{\tilde{p}(G)}) \approx 1_{\tilde{p}(G)} \)
Thus \(c_{\tilde{p}(G)} \) is homotopic identity for \((\tilde{p}(G), \nu) \)

(ii) Let \(\phi : G \to G \) be homotopy inverse for \((G, \mu) \). So \(\mu \circ (\phi \times 1_G) \) and \(\mu \circ (1_G \times \phi) \) are homotopic to homotopy identity \(c_G \) for \(G \). Now
\[(\nu \circ (1_{\tilde{p}(G)} \times \phi_{\tilde{p}(G)}))(\tilde{p}(g)) = \nu(\tilde{p}(g), \phi_{\tilde{p}(G)}(\tilde{p}(g))) \]
\[= \nu(\tilde{p}(g), \tilde{p}(g_1)) \text{ for some } g_1 \in G \]
\[= (\tilde{p} \circ \mu)(\tilde{p}(g), \tilde{p}(g_1)) \]
\[= \tilde{p}(\mu((\tilde{p}(g), \tilde{p}(g_1))) \]
\[= \tilde{p}(\mu(\tilde{p}(g), \phi_{\tilde{p}(G)}(\tilde{p}(g)))) \]
\[= \tilde{p}(\mu(1_{\tilde{p}(G)} \times \phi_{\tilde{p}(G)})(\tilde{p}(g))) \]
\[\approx \tilde{p}(c_{\tilde{p}(G)}(\tilde{p}(g))) \]
\[\approx \tilde{p}(e) \]
\[\approx e \]
\[\approx c_{\tilde{p}(G)}(\tilde{p}(g)) \]
Thus, \(\nu \circ (1_{\tilde{p}(G)} \times \phi_{\tilde{p}(G)}) \approx c_{\tilde{p}(G)} \)
Similarly we can show that \(\nu \circ (\phi_{\tilde{p}(G)} \times 1_{\tilde{p}(G)}) \approx c_{\tilde{p}(G)} \)
Hence \(\phi_{\tilde{p}(G)} \) is homotopy inverse for \(\tilde{p}(G) \).

(iii) Associativity
Since \((G, \mu) \) is associative. So the following diagram is commutative upto homotopy.

\[
\begin{array}{ccc}
G \times G & \xrightarrow{\mu \times 1_G} & G \times G \\
1_G \times \mu & \downarrow & \downarrow \mu \\
G \times G & \xrightarrow{\mu} & G
\end{array}
\]

that is, \(\mu \circ (\mu \times 1_G) \approx \mu \circ (1_G \times \mu) \)
Now, replacing \(G \) by \(\tilde{p}(G) \), we have to show that \(\nu \circ (1_{\tilde{p}(G)} \times \nu) \) is homotopic to \(\nu \circ (\nu \times 1_{\tilde{p}(G)}) \), that is, the following diagram is commutative upto homotopy.

\[
\begin{array}{ccc}
\tilde{p}(G) \times \tilde{p}(G) & \xrightarrow{\nu \times 1_{\tilde{p}(G)}} & \tilde{p}(G) \times \tilde{p}(G) \\
1_{\tilde{p}(G)} \times \nu & \downarrow & \downarrow \nu \\
\tilde{p}(G) \times \tilde{p}(G) & \xrightarrow{\nu} & \tilde{p}(G)
\end{array}
\]

Then
\[(\nu \circ (1_{\tilde{p}(G)} \times \nu))(\tilde{p}(g_1), \tilde{p}(g_2), \tilde{p}(g_3)) = \nu(\tilde{p}(g_1), \nu(\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[= \nu(\tilde{p}(g_1), (\tilde{p} \circ \mu)(\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \mu)((\tilde{p}(g_1)), \mu((\tilde{p}(g_2), \tilde{p}(g_3)))) \text{ [Since } \tilde{p}^2 = \tilde{p} \text{]} \]
\[\approx (\tilde{p} \circ \mu \circ \tilde{p}(g_1), \mu(\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \mu \circ \tilde{p} \times 1_G)(\tilde{p}(g_1), \mu(\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \tilde{p}) \circ \mu (\tilde{p}(g_1), \mu (\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx \tilde{p} \circ \mu (\tilde{p}(g_1), \mu (\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx \tilde{p} \circ (\mu \circ (1_G \times \mu)) (\tilde{p}(g_1), (\tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx \tilde{p} \circ (\mu \circ (\mu \times 1_G)) ((\tilde{p}(g_1), \tilde{p}(g_2)), \tilde{p}(g_3)) \]
\[\approx \tilde{p} \circ \mu (\mu (\tilde{p}(g_1), \tilde{p}(g_2)), \tilde{p}(g_3)) \]
\[\approx \tilde{p} \circ \mu (\mu (\tilde{p}(g_1)), \tilde{p}(g_2), \tilde{p}(g_3)) \]
\[\approx \tilde{p} \circ \mu (\mu (\tilde{p}(g_1)), \tilde{p}(g_2), \tilde{p}(g_3)) \]
\[\approx (\tilde{p} \circ \mu) ((\tilde{p} \circ \mu \times \tilde{p})(\tilde{p}(g_1), \tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \mu) ((\tilde{p} \circ \mu \times (\tilde{p} \times 1_G)) (\tilde{p}(g_1), \tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \mu) ((\tilde{p} \circ \mu)(\tilde{p}(g_1), \tilde{p}(g_2), \tilde{p}(g_3))) \]
\[\approx (\tilde{p} \circ \mu)((\nu \circ \nu \times 1_{\tilde{p}(G)})) (\tilde{p}(g_1), \tilde{p}(g_2), \tilde{p}(g_3)) \]

Thus
\[\nu \circ (1_{\tilde{p}(G)} \times \nu) \approx \nu \circ (\nu \times 1_{\tilde{p}(G)}) \]

Now, we show that inclusion map \(i : \tilde{p}(G) \to G \) is an H-map.
First, we show that the diagram

\[
\begin{array}{ccc}
\tilde{p}(G) \times \tilde{p}(G) & \xrightarrow{i \times i} & G \times G \\
\downarrow \nu & & \downarrow \mu \\
\tilde{p}(G) & \xrightarrow{i} & G
\end{array}
\]

is commutative up to homotopy which proves that \(i \) is an homomorphism. We have
\[(\mu \circ (i \times i))(\tilde{p}(g_1), \tilde{p}(g_2)) = \mu(\tilde{p}(g_1), \tilde{p}(g_2)) \]

Now, \((i \circ \nu)(\tilde{p}(g_1), \tilde{p}(g_2)) = i(\nu(\tilde{p}(g_1), \tilde{p}(g_2))) \]
\[= i((\tilde{p} \circ \mu)(\tilde{p}(g_1), \tilde{p}(g_2))) \]
\[= i(\tilde{p}(\mu(\tilde{p}(g_1), \tilde{p}(g_2)))) \]
\[= \tilde{p}(\mu(\tilde{p}(g_1), \tilde{p}(g_2))) \]
\[\approx \tilde{p}(\mu(\tilde{p}(g_1), \tilde{p}(g_2))) \quad \text{[Since } \tilde{p}^2 = \tilde{p} \text{]} \]
\[\approx \tilde{p}(\mu((\tilde{p} \times 1_G)(\tilde{p}(g_1), \tilde{p}(g_2)))) \]
\[\approx (\tilde{p} \circ \mu \circ (\tilde{p} \times 1_G)(\tilde{p}(g_1), \tilde{p}(g_2)) \]
\[\approx (\mu \circ \tilde{p} \circ \tilde{p})(\tilde{p}(g_1), \tilde{p}(g_2)) \]
\[\approx \mu(\tilde{p}(\tilde{p}(g_1), \tilde{p}(g_2))) \]
\[\approx \mu(\tilde{p}(g_1), \tilde{p}(g_2)) \]
\[\approx (\mu \circ i \times i)(\tilde{p}(g_1), \tilde{p}(g_2)) \]

Thus \(i \circ \nu \approx \mu \circ i \times i \)

Now, to show that the homomorphism \(i \) is an H-map, we prove that the diagram

\[
\begin{array}{ccc}
\tilde{p}(G) & \xrightarrow{i} & G \\
\downarrow c_{p(G)} & & \downarrow c_G \\
\tilde{p}(G) & \xrightarrow{i} & G
\end{array}
\]
is commutative up to homotopy where $c_{\tilde{p}(G)}$ and c_G denote constants map on $\tilde{p}(G)$ and G respectively.

\[(c_G \circ i)(\tilde{p}(g)) = c_G(i(\tilde{p}(g)))\]

\[= c_G(\tilde{p}(g))\]

\[= c_{\tilde{p}(G)}(\tilde{p}(g))\]

\[= i(c_{\tilde{p}(G)}(\tilde{p}(g)))\]

So, $c_G \circ i \approx i \circ c_{\tilde{p}(G)}$

Hence inclusion $i : \tilde{p}(G) \to G$ is an H-map. Now for any H-group (L, η), we have

\[L \xrightarrow{f_1} \tilde{p}(G) \xrightarrow{i} G\]

where f_1, f_2 are H-maps, therefore $i \circ f_1 \approx i \circ f_2 \Rightarrow f_1 \approx f_2$. Thus $[i]$ is an H-subgroup in the category of H-groups (with objects as H-groups and morphisms as equivalence class of H-maps).

References

Received: September 3, 2014