The Solution of the Diophantine Equation

\[x^2 + 3y^2 = z^2 \]

S. Abdelalim

Laboratory of Mathematics, Computing and Application
Department of Mathematical and Computer Sciences
Faculty of Sciences, University of Mohamed V Agdal
BP.1014, Rabat, Morocco

H. Dyani

Department of Mathematical and Computer Sciences
Faculty of Sciences, University of Hassan II Ain Choc
B.P 5366 Maarif, Casablanca, Morocco

Copyright © 2014 S. Abdelalim and H. Dyani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we are interested to show how to solve the diophantine equation \(x^2 + 3y^2 = z^2 \) by using the arithmetic technical.

Mathematics Subject Classification: 20K30, 20K40, 20K27

Keywords: Diophantine equations

1 Introduction

In [4] Ribet showed that the curve \(E_{\text{Frey}} : y^2 = x(x - a')(x + b') \) where \(a' + b' = c' \) cannot be modular. And Wiles showed in 1994 that all semistable elliptic curves over \(\mathbb{Q} \) are modular. According to theorems Ribet and wiles we deduce that the diophantine equation \(x^n + y^n = z^n \) with \(xyz = 0 \) has no solution in \(\mathbb{Z}^3 \). Many mathematicians are interested to study the diophantine equation; As Bennett studied the diophantine equation \(x^{2n} + y^{2n} = z^5 \) [2] in
2004, Frits Beukers studied the diophantine equation $Ax^p + By^q = Cz^r$ in 1998 [1] and Nils Bruin search the solution of the diophantine equation $x^9 + y^8 = z^3$ with $xyz = 0$ in 1999 [3].

In our paper we are interested to search the solution of the diophantine equation $x^2 + 3y^2 = z^2$.

2 Results and Discussion

2.1 Diophantine equation $x^2 + 3y^2 = z^2$

In this section we show the following result which characterizes the solution of the diophantine equation $x^2 + 3y^2 = z^2$.

Proposition 2.1 If $(x, y, z) \in \mathbb{Z}^3$ is a solution of the diophantine equation $x^2 + 3y^2 = z^2$ then $3 \wedge xz = 1$.

Proof

Assume the contrary. If 3 divides xz then we have two cases:

The first case, if $x = 3x_1$ then the equation $x^2 + 3y^2 = z^2$ is equivalent to $(3x_1)^2 + 3y^2 = z^2$. Therefore $z = 3z_1$ so $3x_1^2 + y^2 = 3z_1^2$ and then $y = 3y_1$. We deduce that 3 divides $x \wedge y = 1$, which is a contradiction.

The second case, if $z = 3z_1$ then the equation $x^2 + 3y^2 = z^2$ is equivalent to $x^2 + 3y^2 = (3z_1)^2$. Therefore $x = 3x_1$ so $3x_1^2 + y^2 = 3z_1^2$ and then $y = 3y_1$. We deduce that 3 divides $x \wedge y = 1$, which is a contradiction.

Theorem 2.1 Let $E : x^2 + 3y^2 = z^2$ diophantine equation and $(x, y, z) \in \mathbb{Z}^3$ with $x \wedge y = 1$, y is even and $xz \wedge 3 = 1$. then the following properties are equivalent:

(i) (x, y, z) is the solution of E.

(ii) $|z| = 3y_1^2 + y_2^2$, $|x| = 3y_1^2 - y_2^2$, $|y| = 2y_1y_2$ with $y_1 \wedge y_2 = 1$

Proof

(ii) \implies (i)

We have:

\[
\begin{align*}
x^2 + 3y^2 &= (3y_1^2 - y_2^2)^2 + 3(2y_1y_2)^2 \\
&= 9y_1^4 + 6(y_1y_2)^2 + y_2^4 \\
&= (3y_1^2 + y_2^2)^2 \\
&= z^2
\end{align*}
\]

(i) \implies (ii)

Since y is even and $x \wedge y = 1$ then x is odd. Therefore z is also odd because $z^2 = x^2 + 3y^2$ which is implies that $\frac{z^2}{2}$ and $\frac{z^2}{2}$ are integers and $y = 2y_0$.

We have:
The solution of the Diophantine equation \(X^2 + 3Y^2 = Z^2 \)

Then \(y_0^2 = \frac{(z-x) (z+x)}{2} \). And since \(x \land y = 1 \) and \(x^2 + 3y^2 = z^2 \) then \(z \land x = 1 \).
Assume that \(d = \frac{(z-x)}{2} \land \frac{(z+x)}{2} \) then \(d \) divides \(\frac{(z-x)}{2} + \frac{(z+x)}{2} = z \) and \(d \) divides \(\frac{(z-x)}{2} - \frac{(z+x)}{2} = x \) So \(d \) divides \(x \land z = 1 \) therefore \(\frac{(z-x)}{2} \land \frac{(z+x)}{2} = 1 \).
Then we deduce that:

\[
\frac{y}{(z-x)} = 2y_1y_2, \quad \frac{y}{(z+x)} = 3y_1^2 \quad \frac{y}{2} = y_2^2
\]

Which is implies that:

\[
z = \frac{(z-x) + (z+x)}{2} = \frac{3y_1^2 + y_2^2}{2}
\]

and

\[
x = -\frac{(z-x) + (z+x)}{2} = -3y_1^2 + y_2^2
\]

Theorem 2.2 Let \(E : x^2 + 3y^2 = z^2 \) diophantine equation and \((x, y, z) \in \mathbb{Z}^3 \) with \(x \land y = 1 \), \(y \) is odd and \(xz \land 3 = 1 \). Then the following properties are equivalent:

(i) \((x, y, z) \) is the solution of \(E \)

(ii) \(| z | = \frac{3y_1^2 + y_2^2}{2} \), \(| x | = \frac{3y_1^2 - y_2^2}{2} \), \(| y | = y_1y_2 \) with \(y_1 \land y_2 = 1 \)

Proof

(ii) \(\implies \) (i)
We have:

\[
x^2 + 3y^2 = \left(\frac{3y_1^2 - y_2^2}{2} \right)^2 + 3(y_1y_2)^2
\]

\[
= \frac{9y_1^4 - 6y_1y_2 + y_2^4}{4} + 3y_1^2y_2^2
\]

\[
= \frac{9y_1^4 + 4y_2^4}{4} \frac{1}{z^2}
\]

(i) \(\implies \) (ii)
We have:

\[
x^2 + 3y^2 = \frac{z^2}{3y^2} = \frac{z^2}{x^2}
\]

\[
= (z - x)(z + x)
\]

Implying that: \(y = y_1y_2 \), \(z - x = 3y_1^2 \) and \(z + x = y_2^2 \). Consequently \(x = -\frac{3y_1^2 + y_2^2}{2} \) and \(z = \frac{3y_1^2 + y_2^2}{2} \).

Acknowledgements. We would thank Professor Mostafa Zeriouh for his helpful comments and suggestions.
References

[3] Nils Bruin. The Diophantine equation $x^2 \pm y^4 = \pm z^6$ and $x^9 + y^8 = z^3$, Compositio Math 118 1999 N 3, 305-321.

Received: July 15, 2014